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PREFACE

Preparation of this handbook was begun in 1965 with ONR sponsorship

| -« [contract NONR 2216(<20)] under the direction of Dr. William Van Dorn

o of Scripps Institution of Oceanography, University of California. The

= N work was completed at the offices of Tetra Tech, Incorporated in

- ‘ Pasadena under the joint authorship of Dr. Van Dorn and Drs. B. LeMéhaute
| and Li-San Hwang because of the extensive experience and contributions of

the Tetra Tech staff in the field of explosion-generated waves.
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FOREWORD

= The problem of water waves generated by underwater explosions became -
of conceptual importance with the inception of atomic testing in a water

environment. Initial interest in waves was primarily to appraise them as

an adjunctive hazard to such testing. However, as large thermonuclear

devices were developed, questions arose as to the tactical and/or strategic.
implications of the wave systems that were produced. Thus, even during

current testing moratoria investigation of these problems has continued.

The first problem systematically attacked was that of coastal damage due

to large explosion-generated waves, since, by analogy with the well-known

phenomena of tsunami waves generated by earthquakes, it was initially .
hypothesized that the explosion of large atomic weapons at sea could result :

in considerable coastal damage by wave run-up and/or flocdirg.

Later, as theoretical and experimental studies revealed the relatively in-

efficient wave making potential of large explesions, and that in many cases ' a

most wave energy is dissipated by breaking on the continental shelf before

- reaching shore, concern over run-up per se was replaced by the realization , S

that other more serious wave problems exist. Accordingiy, recent em- : .
pPhasis has been directed towards assessing the nature of the breaking wave |
regime offshore and its implications on the vulnerability of ships and under-

sea structures to breaking waves in relativzly deep water (100 feet). These

studies, in turn, have indicated more refined secondary probiems. These

include harbor oscillations induced by cumulative wave action offshore, and

anomalous wave-induced clogging or erosion of harbor entrance channels by

sediment transport.

Most of these problems are amenable to analysis, and present techniques

have been developed for gross wave predictions over fairly complicated

topography that are in good agreement with experimental and field test
results. But increasing prediction accuracy requires, unavoidably, in-

creasing environmental detail and consequent complexity of treatment.

PR

It is to be emphasized that there is8 no cut-and-dried shortcut to accurate

\ .
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prediction, and each case of importance must be considered as a separate
problem.

This report seeks to present to the non-disciplinary educated scientist a
procedure for wave predictions based upon the state-of-the-art in the field
of explosion-generated waves. Rather than attempting to assemble all the
advanced hydrodynamic theories related to the explosion-generated waves,
which have been carried out during the past decade, careful selection has
been made with the aim of presenting the minimum amount of information
necessary to justify the conclusions reached without sacrificing logic.
Second-order effects, even though sometimes thoroughly investigated
elsewhere, have been neglected in this presentation when they do not

significantly alter these conclusions.

A specific background in hydrodynamics and water waves would indeed
be necessary for more exhaustive analysis than that presented here, and
the reader who wishes to study the subject in depth is directed to the

abundantly referenced material.
It is to be hoped that the accumulation in cne report of widely scattered
information will permit the reader a basic understanding of the state-of-

the-art, and also permit efficient orientation of further research on un-

answered questions which are of interest to the Department of Defense.

xiv
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CHAPTER I - INTRODUCTION
GENERAL CHARACTERISTICS OF EXPLOSION-
GENERATED WAVES :
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‘ I-1 GENERATION HYDRODYNAMICS

Anyone who has witnessed a pebble being tossed into a large shallow
pond is familiar with the type of wave system set up following its impact

with the free surface. Rings of waves spread out over the surface, each

propagating radially ov‘ward until the margins of the pond are reached,
after which the indiviaual crests are either reflected in a rather complicated
manner or are absorbed by breaking and/or viscous dissipation on the
sloping shore. Except for secondary details and an enormous difference

in scale, this phenomenon is a perfect analog to the wave system produced
by a large explosion in the sea. Indeed, the present best estimates of the

waves and wave effects to be expected from very large nuclear explosions

are obtained from observational data on the waves produced by explosions

on a much smaller scale, together with a generalized hydrodynamic model

to which the appropriate scaling factors can be applied.

l Basically, the wave system is produced by the attempts of the free sur-
face to restore itself to its original level under gravitational forces,

following the deformations and velocities imparted to it by the explosion.

While the wave system, once formed, can be considered to conserve
energy during its subsequent deveiopment, the generation process appears
to be extremely non-conservative, in that only a small fraction of the total B
H available thermal energy of the explosion emerges in the form of organized ‘z
wave motion. This fraction appears to increase slowly with the absolute |
energy of the explosion. It is sensibly negligible for explosions relatively

high above or far beneath the surface, and reaches a maximum of a few

percent for those in the immediate vicinity of the surface.

As much as 50% of the thermal energy available in a submerged (nuclear)
explosion is lost as irreversible heating or shock in the water during the
firgt bubble expansion. All of the remainder, (excepting that small fraction

appearing as wave motion) appears as disorganized turbulent motion, and

later is dissipated as heat. These phenomena are readily observablefor anex-

- plosion at shallow depth by the successive appearances of the massive spray




dome, column, plume, and base surge as precursers to the issuance

of waves from the central region. For very deep explosions the turbulence
is generated within the violent toroidal circulation associated with suc-
cessive bubble pulsations, and there may be very little surface mani-

festation.

For explosions above the surface, the percentage of energy effective in
water wave generation is << 1% and decreases with burst height. Attempts
to explain wave generation from air bursts theoretically have been largely

unsuccesgsful.

Fortunately, however, certain observable features of both chemical and
nuclear explosions have been found to be scaleable in terms of power
functions of the explosive energy release. It has also been found possible
to express a linear theory for wave generation in terms of similar functions.
This theory, when normalized to a given set of experimental data, adequately
predicts the wave characteristics observed from other experiments on
much larger scales, provided that geometric similitude is maintained.
Enough experimental data for surface and subsurface chemical explosions
(1/2 - 14,500 lbs, TNT equivalent)now exists to normalize the theoryto a
wide range of initial conditions. The extensiontonuclear tests where wave
measurements were conducted is, however, limitedtotwodeeply submerged
explosions inthe kiloton range (Wigwamand Hardtack Wahoo), several megaton
range surface shots within an atoll (Opefation Redwing), and a number of
high-altitude megaton-range shots over the open sea (Operation Dominic).
Although the accuracy of the wave measurements for the deep tests was
very poor, the best estimate of the maximum wave heights was well within
the confidence iimits for scaled chemical explosions, under similar geo-
metries. This suggests that the wavemaking efficiencies of submerged
nuclear and chemical explosions do not differ significantly. Although there
is no comparable chemical data for the surface (atoll) and high-altitude
tests, the effective surface loading (pressure-time history) is known to be

very different in the two cases. Therefore, one suspects that the scaled-
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up results from chemical explosions in the atmosphere would not be a
reliable guide to nuclear effects in the same geometry. However, the
largest previous air-bursts have produced surface displacements only

of the order of inches directly below the shot point and a maximum of a
foot or so at any shore location. Since it is known that air-impulse effects
scale very well, no wave effects of critical civil or military importance
are to be expected from air bursts as large as 100 megatons. For this
reason, waves from air-bursts will not be considered further in this

context.

The appropriate scaling for nuclear surface explosions is at the same

time the most critical and the most uncertain. This is because of an
anomalous high pezk in the curves of reduced maximum wave height

versus charge depth for chemical explosions at the surface - a phenomenon

which currently has no sound physical explanation - together with the

mixed boundary condition that chemical scaling apparently works in water

but not in air. There appears to be no reliable guide to selecting the

best scaling coefficient, since predictions for cratering by nuclear devices
in solid materials suffer from precisely the same lack of experimental
information. Therefore, pending further experiments, it will be assumed
that surface nuclear explosions will produce effects identical with those
from chemical explosions scaled in the conventional ratio of 1 kilo-calorie/

gram TNT equivalent.

Despite the fact that extensive efforts have not provided a quantitative
picture of surface and subsurface explosion hydrodynamics, enough in-
formation exists to put together a fairly consistent qualitative picture.
Some discussion of the mechanism is appropriate here for completeness,
even though no direct physical connection with the generation model,

described later, can be defended.

To begin with, we neglect any consideration of hydroacoustic shock

effects in wave formation, except to note that energy going into shock




is considered to be irreversibly lost and unavailable. The percentage
of total available thermal energy lost to shock varies from a minimum
of about 40% for a surface explosion to over 90% for a very deep one,

wherein several bubble pulsations may have occurred (Kot, 1964).

Secondly, ignoring any intrinsic difference in the nature of the explosive,

an explosion anywhere within the water column produces a cavity in the
water. The shape and subsequent time-history of the cavity depends upon
the abgolute energy release, the depth of the detonation point beneath the
free surface, and the proximity of the bottom. In the absence of boundaries,
the explosion cavity tends to spherical symmetry. However, this symmetry
is vertically more and more distorted the closer the proximity of the free
surface, owing to the hydrostatic pressure differential across the cavity.

If the cavity vents before reaching its maximum expansion, the resulting
crater will be approximately parabolic in section at early times. Since

this differential will be least for small explosions because of atmospheric
pressure, the corresponding cavities will approach spherical symmetry at
relatively shallower charge depths than those from large explosions. The
characteristics of explosion cavities at reduced pressure have been

modeled in detail on a small scale by Kaplan and Goodale (1962).

In contradistinction to explosion cavities in solid materials, where the
ultimate cavity size is limited by the rigidity and compressibility of the
medium, a water cavity can continue to expand under inertial forces alone,
ever after the internal pressure has dropped below the local hydrostatic
pressure. As a result of the differential pressure across the cavity, the
bottom of the cavity will reverse direction and begin to move inward
(upward) in advance of the sides and top, respectively. Thus there is a
general tendency for the cavity to turn inside out, or evert, during the
ensuing collapse phase, leading to the formation of a jet that is strongly
accelerated vertically upwards by the potential field of the collapsing
cavity (Ash and Eichler, 1964).

The subsequent history of the jet appears to depend rather intimately on .

the initial charge depth, but for situations important from the point of

I o e«
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wave production, it penetrates through the surface, emerging as a dense
vertical column of water, often enshrouded 1n a spray plume of explosion
products and water thrown up directly by the initial cavity expansion.

Upon falling back under gravity, the column degenerates into a turbulent
and unstable mound of water which, at some undefined point, might

be considered as the mathematical precursor to the formation of
water waves. As might be expected, either displacement of the charge

to great depth or the introduction of a rigid bottom in close proximity
beneath the charge acts to inhibit the formation of a substantial water
column, aind hence, the formation of large waves. However, the resulting

wave spectrum will be quite different in the two cases cited.

Students of this complicated subject will recognize the considerable over-
simplification of the true state of affairs in the above description. How-
ever, most of these phenomena are readily observable in small-gcale

laboratory experiments, wherein hemispherical charges are detonated

against a glass plate, which acts as a transparent half-space, through

which the ensuing cavity history can be recorded with high-speed

photography (see Fig. II-2).




1.2 EXPLOSION WAVE CHARACTERISTICS

For a discussion of the wave system produced by an explosion, we refer
again to the analogy of the pebble tcssed into a pond. This also exhibits,
sequentially, a cavity, an everted jet that collapses into a mound, followed
by rings of waves sprcading over the surface. In the mathematical senze,
all of these waves originate within the same central mound (or depression)
and are simultaneously released to propagate radially ontward in their
characteristic and familiasr pattern. If the water depth is everywhere uni-
form, or relatively very deep, the pattern will be perfectly circular, and
consists of concentric rings of crests and troughs, bounded at the outside.
by an intangible '"front', that expands outward at the limiting velocity

¢o = J/gh for free gravity waves in water of depth h (g = gravity). All
subsequent waves travel more slowly. At any instant of time the radial
separation between successive crests {(wavclength) is largest near the front
and progressively smaller towards the center. All individual waves of the
system retain their identity, although the total number of waves present in-
creases with time, as if they were beirg pulled like an accordion bellows

out of a black box that comprises the source regior.

In general, no two waves of the system are of the same size, nor does
the ampglitude of any wave remain the same from place to place and time
to time. Within this everchanging pattern the energy distribution among
waves ig manifested by amplitude modulation of the wave train in a manner
which is determined by the nature of the source, its distance from the
point of observation, and the depth of water. As the pattern expands, the
amplitudes of all the individual waves are, on the average, diminished
because the wave system contains a finite and constant amount of energy
which is diffused with increasing time or distance. This effect can be
resolved into two factors: dispersion, due to the increase in wave length
and number of individual waves; and geometric expansion, caused by the

increase of crest length necessary to circumacribe progressively larger

radii.
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Most of these features are well illustrated in Fig. I-1, which shows

three successive stages in the development of an explosion-generated

wave train. The vertical and horizontal axes in this figure are dimen-
sionless distance R = r/h and dimensionless time T =t /m , respec-
. tively. This diagram is therefore appropriately called an R-T diagram.
i The three computer-generated oscillatory curves show the amplitude-time
histories of a wave train generated at the origin as they would be recorded
_ at the non-dimensionaldistances, R=2, 4, and 6. The symmetrical dashed
3 curves bounding the wave trains, comprise the wave envelope, and serve to

1 define the distribution of energy within the train. The precise shape of che
envelope depends upon the initial source conditions, whereas the space-time
coordinates of the individual waves are independent of the source and depend
T only on the water depth. A characteristic of the wave envelope is that any
| identifiable portion of it - say, a node or antinode - propagates at uniform
velocity, as shown by the straight lines o-a connecting the origin with the nodal
points delimiting the beginning (wave front) and o-b ending points of the first
envelope maximum in Fig. I-1. In contradistinction, the space-time
_ trajectories of all waves of the system are curves, concave upwards, be- .
v cause the waves are continuously accelerating towards the limiting phaase |
ve locity €5 /_gﬁ of the wave front. Thus the waves travel faster and pass

. t1rough the successive nodes of the wave envelopes, and therefore there

are progressively more waves in each envelope segment with increasing
time or distance. For large explosions in the deep ocean, by the time the
wave system has traveled a distance equivalent to 300 water depths, there

will be more than 100 waves between the front and the first nodal point.

A second important feature of the wave envelope is that its amplitude, as

measured along any straight line through the origin of the R-T diagram, is
¥ inversely proportional to its distance from the origin. Thus the height of
the highest wave in the upper wave train of Fig. I-1 is about 1/3 that of
the corresponding wave in the lower train, the latter having traveled three
times farther. The above features, together with the experimentally de-
. termined result that the linear dimensions of explosion cavities scale
over large ranges as a power function of the yield, results in the often

: used and over-simplified expression:
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Hr/YP = F

where H is the wave height, usually taken at the first envelope maxi-

mum (i.e., the highest wave in the train), r is distance from the explosion,
Y is the charge weight (yield), F is an empirically determined function of
charge depth and water depth (relative to the charge weight). According to
scale iaw the exponent p is cne-half for a small explosion in a deep, per-
fect fluid with no atmosphere. The most reliable experimental results

give a somewhat higher value {(p = 0. 54), possibly owing to the prior-
mentioned hydrostatic pressure difference across the explosion cavity,

which increases with yield.

Now in nature the water depth is rarely uniform and since the propagation i
speed of individual waves depends in a rather complicated way upon the
water depth and the local wave length (itself an implicit function of depth),

the initial symmetry of the wave pattern soon becomes somewhat distorted,

T

the shallower portions being slowed down. This effect, analogous to phase
distortion in optics, is most marked at the outer margins of the pattern.

Here, the longer wavelengths are more sensitive to depth variations than

R T S

the shorter waves near the center. As in optics, the influence of any small
topographic irregularity (compared with the local wavelength) is averaged

out, and only larger features can appreciably alter the symmetry.

Under these circumstances the wave system development can no longer

be simply presented on a dimensionless R - T diagram. Its behavior and
characteristics at any time and place must be calculated step by step .
over the real topography. Since these calculations depend upon the local ,
wavelength, the results are no longer scaleable in terms of yield unless

the water depth is relatively deep in comparison to all wavelengths of interest.

These physical wave characteristics can be summarized as follows:
1. The waves travel radially from the location of the explosion.
2. At a given location they appear as a succession of waves of
decreasing period.

3, Wave amplitudes vary with time so that they appear as a

10
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succession of wave groups, the number of waves per
successive group decreasing towards a constant limit.
The period of each wave increases with distance traveled.
The number of waves per group increases with distance.
The length of a group increases with distance.

The average wave height in a group decreases with dis-
tance traveled.

The period of the maximum wave in a group is constant.
The maximurn wave height of successive groups at a

given location decreases with time.

While the relative variation of wavelength with distance is a significant
feature of dispersive waves in deep water, this variation becomes less
pronounced in shallow water and with distance. Relative variation of
wave period from one wave to another also decreases with decreasing
depth or distance from the explosion. For these two reasons, the waves
generated by a large deep water explosion far from the continental slope
can be treated as a succession of quasi-periodic waves on the slope

and shelf. If the explosion is near the slope, the dispersive effect

is still significant so that the variation of wavelength across the slope

must be considered.

11
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I-3 WAVES ON THE CONTINENTAL SHELF AND COASTAL EFFECTS

When the waves approach the continental slope, a small part of the
energy of the leading waves is reflected seaward. A fairly accurate
estimate of the reflection coefficient can be made by assuming that each
wave behaves as a periodic wave of the same period. From a hydro-
dynamic viewpoint, continental slopes are so gentle that, for most
practical purposes, conservation of energy flux obtains, and reflections

can be ignored.

As the waves from such a system approach the shoreline and pass into
shallow wate.s, the individual wave amplitudes tend to become larger

and their length shorter as the energy increment within each wave is
concentrated in an increasingly smaller volume of water. This effect
opposes the tendency for waves to become smaller because of dispersion
and geometric spreading, and there will therefore exist for each wave

of the system a minimum amplitude at some point in its history. Even-
tually, as shoaling and wave growth continue, the local wave amplitude

will amount to an appreciable fraction of the water depth. In this ''shallow

water' regime, additional modification of the wave system is brought about

by amplitude distortion, which is nonlinear, has no precise parallel in
optics, and is due to the fact that the phase speed of a free gravity wave
in very shallow water is also a function of wave amplitude, a higher wave

tending to travel faster than a smaller wave of the same length.

In shallow water, nonlinear effects become important, and some damping

is produced by bottom friction. Due to convective inertia, the individual

wave profile may become unstable, each wave subdividing into a succession

of two or three undulations, which travel either as solitary waves or as
undular packets separated by long flat troughs. Ultimately, as shoaling
and wave growth continue, each wave becomes unstable and, depending on
its steepness and the bottom slope, either breaks or surges up upon the

shore.

Wave behavior in the immediate vicinity of the shore is very complex,




depending not only upon the slope and curvature of the shoreline, but
also upon the history of each previous wave in the train, such that, in
general, the point of breaking and the extent of local run-up are unique
for every wave and for every point along the shore. Moreover, even
more than with offshore propagation, these effects are not scaleable in
terms of charge weight because the local effects depend upon the absolute
wave height and length near shore. For this reason any prediction
method must consider each critical area of the coastline independently,
and calculate enough different situations so as to be sure to bracket all
critical conditions, before general statements can be made about sus-

ceptibility to wave attack from large explosions.

Aside from the direct effects of run-up on the shore, large explosions
can, under appropriate circumstances, produce very large waves in
deep water, which may break upon the continental shelf many miles from
shore. Since the wave spectrum for large explosions is peaked at wave
periods substantially longer than the longest prevailing swell or surf,
the net result is the creation of a breaker zone covering a very large
area, and which can persist for several hours. Such waves could pose
unusual and potentially severe problems to coastal navigation, not only
through direct dynamic effects, but also because of cumulative effects
such as inducement of resonant harbor oscillations and the scouring or

deposition of sediment in regions ordinarily immune to normal storm

conditions.

13
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WAVE GENERATION MECHANISM
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II-1 THE SOURCE MODEL

The theory for wave generation by explosions is not really a physical
theory, but a mathematical model, based upon highly idealized source
- conditions that, having been once adjusted to describe the time variations
of water surface elevations as observed at some point not too close to the
source of an actual explosion, will thereafter reasonably predict them at

any other distance or time. This mathematical model is scaleable in

terms of explosion energy (yield). Since, however, it is manifest that
the v.olent motions iimediately following real explosions in water are i
not converted entirely into waves, no physical reality can be ascribed

to the initial conditions assumed for the model, except to state that the

same wave system would have resulted. Thus the choice of initial conditions

is arbitrary to the extent that several model solutions can be forced to fit an
observed wave train, and the particular solution presented here is only one
of several proposed in the literature, although it appeals because of its

mathematical simplicity.

. The most general treatment is that of Kajiura (1963) although Kranzer and
Keller (1959) have given a class of axi-symmetric solutions. (See also
Van Dorn (1964), Whalin (1965), Hwang and Divoky (1967), for applications. )

In all such solutions, the wave train is considered to have originated from
within a bounded disturbed region where the distribution of some forcing
function within the region is the known initial condition. The function

can be an initial elevation or depression of the surface, an impulse

on the free surface, a given velocity distribution, or any combination

thereof. Solutions also exist for functions that are time-dependent, al-
though these have not been studied so extensively. But regardless of the

! form assumed for the initiating disturbance, it is treated thereafter as

a problem of inviscid, incompressible potential flow, in which the re-

| sulting wave system may be thought of as a spectral continuum that can be

: . subdivided into component frequencies w, each of which propagates radially

at its characteristic group velocity v in water of depth h(r, 8) given by
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1
v = dw/dk = 3(gk™! tanh kh)? (1 + 2kh/sinh 2kh) (1I-1)

which is obtained by direct differentiation of the equation .

w? = gk tanh kh, (11-2) .

where kis the wave number, r and aare polar coordinates. Consideration of Egs.

(1I- 1) and (II-2) reveals that, in general, lowfrequencies propagate fast-r than

high frequencies, asymptctically approaching a limiting value v + JEE . L
as @ -=0. Thus the individual frequency elements are separated as they |

travel away from the source, which process has been given the name

|
. R |
dispersion. N
|

The distribution of energy among frequencies is determined by the spatial N
dimensions of the source and/or its speed of occurrence (intensity),
tending to be maximized at a frequency corresponding to a wavelengi » -
L = 2rr /k which is of the order of the spatial dimensions of the source in

a given direction. Hence, a crude method of determining the source
dimensions consists of observing which frequencies dominate the spectrum

made from a recording of the wave train at a distance. -

At any instant of time, a three-dimensional physical model of the energy
distribution might consist of two identical, elastic spider webs placed one

above the other and separated by a vertical distance corresponding - at

every point - to the square root of the local energy density. The peripheral

strands of the web can be likened to the instantaneous positions of discrete

adjacent frequencies all propagating outward in the directions indicated

by the radial arms of the web. The total energy in the system which can

be thought of as subdivided by the web into discrete patches is (Van Dorn. 1965)

2n o
E, =pg J. J H% dg dw = constant (I1- 3)
0 o

Pt ! where H is the vertical web separation, or the height any wave would have

o4 if it occupied that region of space at the particular time in question, p is

density and dg dw is the patch area. At a later instant of time the webs have
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been stretched to a greater radius in all directions, with a corresponding

reduction in the spacing between them, since the total energy is constant, :
Such a ""quantization'' of the energy into patches (hydrons) has been proposed -
by analogy to the phonons of acoustic radiation (Synge, 1962). |

The velocity of the leading disturbance (w = 0) is given by

v = Jgh (11-4)

The energy, of course, is manifested by an annular gravity wave system,
interposed between the web meshes such that the crests and troughs just
touch the webs. The individual waves of the system travel at a character-

istic phase velocity given by

_dr 1

w/k = 3¢

L
c = {(gk” "tanh kh)? ' (1I-5)
Comparing Eq. (II-1) with Eq. (II-5), it is apparent that, in general,
¢ >v, butthat v »c -» \/gh as w- 0, and therefore the waves travel
faster than the energy patches given by the web elements. Equation (II-5!

has solutions of the form
cos 2T (Wt - kr - ) = constant (I1-6)

where r is the space coordinate of a particular wave phase at time t,
and ¢ is a phase paraineter which, depending upon the initial source
conditions, ranges from 0< @ <m/2, If Eq. (II-5) is integrated with the
aid of Eq. (II-6) to obtain the trajectory of a particular wave in a space-
time coordinate system, it will be found that, as this wave accelerates
past the slower-traveling patches, it will always possess, instantaneously,
the frequency and wave number apprcpriate to the patch it is passing.

All of the foregoing properties are very elegantly compressed into the

two equations relating the pertinent variables (see Kinsman, 1965):
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which can be derived very generally from the linear theory of dispersive
waves. These equations give the distrioution of wave number and fre-

quency in the R-T plane.

Consider now the particular example of an initial surface deformation
of height ITIO(R, f), where }_10 is small compared with the uniform
water depth h (Fig. II-1). Taking the origin of polar coordinates within |
the disturbed region, the resulting local anomaly of surface elevation
N(R, T) .can be shown to be (Kajiura, 1963)

® 21T =@
l pyd i
nR.T) =5 [ ococar | [ A (R 6N _(GRIRAR dbdo (I1-8)
o o o
where the following quantities have been nondimensionalized in terms of h: - f
R = r/n (distance) 0 = wy/h/g = .J/otanho (frequency) )’
T = t,/g/h (time) V = v/J/gh (group velocity)
o = kh {wave number)

Equation (lI-18) requires the evaluation of three integrals. The second

and third integrals represent the summation of contributions from an

infinite number of point sources having polar dimensions dR and d#8

and height ﬁo’ while the first integral is the Hanke! transform of

the initial deformation Ho' If we now restrict our attention

to cases where the disturbance has circular syminetry with respect to

the origin of the explosion (a single explosion), Eq. (I1-8) can be reduced .

to

18
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n(R, T) = jooco. (AT) 1_(0) J (R 0) do : (11-9)
where
10 = | H R) I Ro) R &R (11-10)

is the zero-order Hankel transform of the initial elevation I-'IO(R). The
integration of Eq. (II-9) in ¢ can now be performed by the approximate
method of stationary phase, giving results that are valid everywhere

* :

except near the source.

i
2

nR,T) = -Rl-Io(o) (— d—g}’-a?) cos (0R - QT) (II-11)

The evaluation of the remaining integral, Io(c), in (II-11) can be per-
formed algebraically if the function HO(R) falls within a restricted list

of those having known Hankel transforms, aithough it is possible on a
computer to take the numerical transform of an arbitrary function. There
are enough transformable functions, however, to construct approximate
solutions for almost any form of ﬁo(R) from sums and differences of
these functions, although the result may not satisfy the continuity re-
quirement that no water is added or lost by the assumed disturbance,

viz,
[- -}
2nf 'I-'I'O(R) dR = 0 (IX-12)
0

While a number of source rmodels (Whalin, 1965, and Van Dorn, 1964)

have been studied, the procedure followed has been essentially the same.

%
The accuracy of the asymptotic solution has been carefully examined
and found to be much better than one would ordinarily suppose from the
assumptions involved (Whalin, 1965).

20

- e ———




) fios Lk R

Cne makes a guess as to the most appropriate transform from the shape
of the observed wave spectrum, and computes a number of smal! varia-
tions until the best fit is obtained. This result is thewn compared to the
results of other wave experiments and further modified, if desired. At
the present writing, an initial function that satisfies the above require-
ments and which results in solutions that can be normalized to closely
resemble the wave systems from actual explosions under widely varying

geometries is given by

= 2
H (R) b [z (R/R )" - 1] R <R

- 0 R >Ro (II-13)

where b is called the cavity height and R, is the cavity radius.
This function consists of a parabolic cavity superimposed

upon a cylindrical elevation. Perhaps coincidentally, this shape
physically resembles the free surface deformation observed at early
times in small-scale model photographs of near-surface explosions

(Fig. 1I-2). Its transform Io (0), easily derived from known functions,

is
bR
Io ) = (I1-14)
and the final form of the solution becomes
_ v/g 12
n(R,T) = Iv7asl J3(R°o) cos R~ QT) (II-15)

This equation is most easily evaluated numerically by assigning succes-
sively equal increments to the wave number 0, and performing the
indicated computations iteratively for each increment. The time of
arrival of each wave number increment at a given radius, and the corres-
ponding wave period at that time, are then explicitly determined by the

definitions of group velocity and frequency.

The above form of the solution has interesting properties, in that wave

21
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Figure 1I-2 A High Speed Photograph of Initial Cavity Shape

Taken Under the Following Conditions:

Charge Size

Ambient Pressure

Charge Depth
Bottom Depth
(Photography by courtesy of URS)
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0. 175 gram. TNT Equivalent

0. 003 Atmosphere
2.0 inches

60. 0 inches
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amplitude (spectrum) and wave position (phase) at any time are given
by separate factors, either of which can be computed independently.
This fortuitous circumstance allows us to predict the local wave height
at any time or place without having to worry about the waves at all,
although the latter can be put in later, if desired. Since the phase
function contains no information about the source disturbance, the
wave system is immutable, depending only upon the (constant) water
depth. That is, from a given point of observation, the same wave sys-
tem will be produced by any (symmetrical) disturbance whatever. and

only the Leight of the waves depends on the source conditions.

The general features of this solution were shown in the R - T diagram

of Fig., I-1, where three consecutive time histories n (t) of the same
wave train were computed for the (fixed) distances R =2, 4 and 6,
respectively, as it has been discussed previously. The time scale

of this figure has been compressed so as to better proportion

the wave envelope dimensions. Wave amplitude, while plotted

in the R-direction, should be recognized as normal to the plane. With ref-
erence toEq. (II-15), ateach stage of its development the wave system consists
of an oscillatory wave train where both amplitude and frequency are
varying with time., The frequency variations are governed by the phase
factor, which has 2 maximum at the wave front, indicated by the straight
line so labeled passing through the origin. However, the wave amplitude,
governed by the amplitude spectrum, is zero at the front, increases
smoothly to an initial - and highest - maximum, and oscillates thereafter
in accordance with the Bessel Function J3(Roc), as indicated by the dashed
lines bounding the wave patterns. Succeeding nodal points in the three
envelopes correspond to the zeros of J3, and can be connected by other
straight lines, the slopes of which give the local values of group velocity.
These lines can also be thought of as joining regions of constant frequency
and wavelength, as well as boundaries delineating zones of constant total

energy.

The local wave amplitude, governed by the magnitude of the amplitude

23
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function along any such line, varies inversely with time or distance,
owing to the factor R™! in Eq. (I1-15). This factor should more
properly be written R™2. R"2, the first factor being due to geometric
spreading of the wave pattern, and the second due to dispersive separa-
tion of adjacent frequencies.

The trajectories of individual \;va.ves, two of which are shown in this figure
{oc and od) by dashed lines connecting consecutive positions of corresponding
wave crests, are parabolic curves in this representation, because the
phase velocity of a wave of a given frequency or wavelength is greater
than the group velocity everywhere except at the wave front. As a result,
individual waves tend to propagate through the envelopes giving the energy
distribution, as already described, thus crossing lines of constant group
velocity (and frequency). They have the interesting property that, while
the period and wavelength of the waves passing a fixed point of observation
continuously decrease with increasing time, they both appear to increase
with time to an observer traveling at wave speed. Siuce no wave can ever
catch the one ahead, the net result of these differential motions is to
accumulate more waves between any two group velocity lines with increas-
ing time and distance; that is, within any proportional segment of the wave

envelope,

If it seems surprising that we have not, until now, mentioned either the
wave period or the wavelength, which, together with the wave amplitude,
comprise the three most physically obvious features manifested by wave
motion, the reason is that the ordinary definitions of these variables

do not accurately apply to a system of dispersive waves. That is, the
wavelength is only very approximately the distance between consecutive
waves, and the period approximately equal to the coresponding time
interval — and this approximation becomes increasingly poor nearer the
wave front. This is because they are not properties of individual waves.
Both wavelength and period should more properly be thought of as functions

24
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of the dimensionless wave number; viz:
- L = 2nh/o (I1-16)
[
. 1 {
T = 2m(h/g o tanh 0)? (I1-17) ;

Both period and wavelength are theoretically infinite at the wave front,
descend hyperbolically, and diminish with increasing time like T-l and

T 2, res pectively.
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iI-2 THE SCALING LAWS

While the non-dimensional generation model (Eq. II-15) is useful in
describing the general features of axisymmetric wave systems, the
effects of varying the initial geometry (water depth and charge position)

and the relative energy (yield) of an explosion can better be discussed
by considering the same model in dimensional form:

br
_ o vik
n(k) = r [' d v/ dk J3 (rok) (1I-18)

where the phase factor has been omitted as irrelevant to the discussion
of wave amplitude. Equation (II-18) states that the amplitude spectrum
n(k) when viewed from a fixed obaserving distance r, depends only

. upon the initial source dimensions b and T and the water depth h.
The former can be supposed, in turn, to depend upon the charge yield,
Y, and the charge depth, Z, relative to the free surface (Z = 0).

I1-2.1 Effect of Water Depth

Consider, first, the effect of changing the depth only, all other input
conditions remaining constant. Figure lI-3 shows n(0) computed for
five values of the ratio h/r and plotted as a function of o= kh. For

clarity, only the first maxima of the wave envelopes are shown. When

the depth is large, the significant regions of the amplitude spectra
become independent of depth., This is because, as in all water wave
problems, the mechanism of surface motion becomes independent of
water depth when the latter exceeds a substantial fraction of a wave-
length (h > L/2). As the relative depth progressively decreases (h/r < 1),
the spectrum undergoes distortion, and the maximum wave amplitudes (as
shown by the solid line) first decrease to about half the deep-water value,

and then increase inversely as the depth decreases without limit. But

this latter increase is inconsistent with the very limited data available on

explosions in shallow water (see Section II-3). Moreover, the theory becomes

increasingly inaccurate for small values of kh. If, however, one accepts the
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physically intuitive argument that the maximum wave height can never
substantially exceed the water depth,

Ny S 0. 39h, r=r (II-19)

where N will diminish toward zero as the water depth diminishes,
as suggested by the dotted branch A-A! in Fig. 1I-3.

I1-2.2 Effect of Charge Depth

We consider now the effect of varying the charge depth Z, while holding
the yield and water depth constant. Since our model is not based on the
physics of wave ‘generation, it says nothing about charge depth, and its
generality as a prediction model depends upon the above-.cited assumption
that the experimentally-determined effects of charge depth variation can
be incorporated in the parameters b and r o (Eq. II-18), and in a manner

(hopefully) scaleable with yield.

The influence of charge depth on wave production has probably been studied
more in'ensively on an experimental basis than any other single factor.
Yet today, there is no satisfactory expl- 1ation fcr all of the observed
effects, typically illustrated in Fig. II-4, which is a plot of maximum
observed wave amplitude time radius N,F Ve: charge depth Z for a con-
stant yield (Y = 385 lbs. TNT) and radius of observation. As the charge
position is moved downwards from a relatively unexplored geometry just
above the free surface (wherein wave effects are known to be small

or unimportant), the curve exhibits a very high, narrow maximum

for shots very slightly beneath the surface, followed by a minimumn,

and a second - but lower - maximum, after which the widely scattered
results suggest that successively lower cycloidal maxima may occur., The
first two maxima have been named the "upper and lower critical depths'',
respectively, because the largest waves occur at these charge depths,

At least the second minimum can be linked to the emergence of the explosion
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bubble at the surface in a contracted phase following its first expansion.

While the lower critical depth is understancabiy analogouy to the maximum
] observed in similar plots of radii and depths of explosion craters in solid
N materials, no sound :hysical explanation has yet been advanced for the !
upper critical maximuin, although a recent theoretical model suggests
that it may be cdue to restriction of surface venting because of surface

shock reflection {Kriebel, 1968). This effect is so far unverified ex- i
perimentaily. However, since the entire region interior to this maximum
is filled with data, it would appear to be a precarious stability condition
that results in maximum effects, and one that is not readily reproducible.
Nevertheless, the possibility that a near-surface axplosion might produce

1 . waves of this magnitude cannot be ignored when making wave predictions.

An additional experimental observation (but cne which may be of princi-
pally academic interest, since the precise arrival times of individual

waves are not ordinarily of military significance) is a change of phase -
between the corresponding waves of trains generated by explo- ,
sions above, or below the upper critical depth, respectively. Sucu a '

change, in fact, is predicted between theoretical models ot wave treins

[
T

generated by an initial impulse and an initial elevation, respeci’ve«iy.

This fact, together with physical intuition, suggests that an impulse model
f may be more appropriate for above - or n.ar-surface explosions. How- i <
ever, since neither model is based on physical reality, and since the de-

|
t formation model can be suitably adjusted to give adequate predictions

for surface explosions, the latter is employed exclusively hereinafter.

S AW, i o i e

I

i

!

)

| Turning now to the question of scaling, empiricalcurves, as shown in
‘ Fig. II-5, which is similar to Fig. II-4, have been obtained for a

[ S R

I variety of chemical (HE) charge weights within the range $ lb <Y <
¢' 14,500 lbs (TNT equivalent), but with a steadily increasing scatter
| in wave amplitudes with increasing charge weight and charge depth.
While some of this scatter can be attributed to Jifferences in the

experimental conditions, much of it appears to lie in an inherent i
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irreproducibility of wave effects from larger explosions, the latter
exhibiting no well-defined amplitude maximum either at or below the

surface. In fact, the maximum waves for large charges were produced

by relatively deep explosions. However, the significant features of the
depth-of-burst curves at smaller charge weights were only obtained
by hundreds of repetitive tests, and an upper critical maximum is still

clearly present with charges as large as 385 lbs.

i Because most of the above testing was performed before the develop-
ment of a suitable hydrodynamic model, earlier attempts to rela‘te per-
tinent variables were restricted to dimensional analysis. Unfortunately,
the water depth was not considered to be important, and most of the larger
tests were carried out over uneven bottom, which has made the wave
records difficult to interpret. Nevertheless, attempts have persisted

to force rather widely scattered results into the framework of the mixed-

dimensional relation

r nm/Yp = G(z/YY (11-20)

where Tlm is the largest recorddd wave amplitude at a distance r and

G is an empirical function (hopefully) to be determined from the optimum
composite curve of all test data obtained by trial adjustments of the
exponents p and q. On a purely kinematic basis one expects that, if
explosions of different sizes produce geometrically similar disturbances,
then one should find that p = 1/2, q = 1/3., Unfortunately, nature is not
quite so kind, and the most careful review of experimental data for HE in
the light of hydrodynamic theory indicates that, while the general form of
Eq. (1I-20) is valid over an impressive range of Y, the best value of the
exponents p and q seem to be slightly different from the above values, and

that, because of atmospheric pressure, Z is not simply scaleable as a

power of Y, as shown below.

First note that Eq. (II-18) shows that whenever ¢> 3, n,F is a function
of the explosi- : paxr. Teisrs only, in accordance with Eq, (II-20).
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In addition to Eq. (II-20), we must establish the scaling law relating
wave number to source radius for events where the charge depth Z

is suitably scaled. Based on experimental results, it is suggested that
roch = F (2) (I1-21) |

Charge depth scaling, particularly for surface-venting explosions, raises
the problem of accounting for energy partition between atmosphere and
water on the cavity hiatory. These effects are manifestly different for
chemical, relative to nuclear, explosions. Unfortunately, the bulk of
empirical data fall within the former category where the physics of energy
partition is least understood. It therefore is more appropriate to first

consider scaling of subsurface explosions.

Using dimensional arguments, and assuming that a constant percentage
of explcsion eneryy goes into shock, for charge depths great enough so :
that the explosion cavity does not rupture the surface at first expansion,

Penny (1945) suggests that the scaling law for Z should be ;

z, +P, Y
2\ Z2 "al . 2 :

where P_ is the atmosphere pressure head. This relation shows that Z

scales like Yl/3 for small charges (Pa >> Z) and like YI/4 for very
large ones (Pa << Z).

. . 0.54 0.3 . -
Figure II-5 is a plot of ‘nmr/Y versus Z/Y for all available TNT !

explosions, where the water depth was large enough so that the wave number
o, 2 3. Data were excluded when the products Nt at different

ranges from a given event failed to agree within 10%. The amplitude

scale-~factor Yo' >4 was determined by minimizing the vertical RMS data

scatter about the arithmetic mean within integer zonal multiples of Z/Y0 3

It is clear that practical limits for prediction purposes can be expressed as

N 0.3

—5 %5 ° 18, 0.25>Z/Y >-0.25 (11-23)
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for gurface explosions, and

T]rnl'

) 0.3
m—— 10, Z/Y <- 0.25 (11-24)

for subsurface explosions.

" 1I-2.3 Scaled Source Coefficients

Returning, now, to Eq. (lI-21), if we let k = km atn=r1n_ signify the
wave number of the maximum wave in the time-record of a wave train
observed at a distance r, then km can be evaluated from experimental

data knowing the (uniform) water depth and arrival time of T Figure

-6 shows the variation of km with yield Y for the data of Figure II-.5
which, again, are practicably divisible into two groups, given by the

power laws

0.44Y %3,  0.25>z/v%3s5-0.25  (11-25)

x
n

surface

0.3 0.3

0.39Y 7, Z/Y < - 0.25 (II-26)

subsurface km

The scatter of data for wave number is very much smaller than that
for wave amplitude, since the dispersion is a function only of the water
depth and source radius. Equation (II-21) is thus verified for explosions

deep enough so that kmh > 3, because the largest waves N will occur

when rokm = 4.2; giving the scaled source radii
. 0.3 0.3
surface r, = 4, Zlkm 9, 6Y , 0.25>2Z/Y >-0.25 (II-27)
R 0.3 0.3
subsurface r, = 4.2/km 2 10. 8Y , Z1Y <- 0.25 (11-28)

It is significant that Yo' 3 is also found to be the optimum scaling ex-

ponent for crater radii in solid materials (Nordyke, 1962).
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Now, combining Eqs. (1I-23), (1I-24) and (II-27), (1I-28), and noting that
for kmh > B.nmr = 0. 63 bro. we obtain the source amplitudes, '

b =28Y%% o0.25-2/v%3>-0.25 (11-29)

surface

1.6 Y

subsurface b 0-24  Z,v%33<_o0.25 (11-30)
Again, YO' 24 scaling has also been found to be most appropriate for
crater depths in solid materials, although there is no corresponding

upper -control maximum in the latter media.

Since not only crater radii but also crater depths in solid materials
diminish as the charge depth is decreased towards zero, the anomalous
increase in maximum water wave amplitude at the upper critical depth
can only be the result of the kinetics of water motion following initial
expansion, probably abetted by the better impedance match between

water and air than that for most solids.

A3 evidence of the general applicability of the model, Fig. II-7 shows
wave envelopes computed from Eq. (II-18) (phase factor omitted)
normalized to the stated maximum amplitudes Mm for three wave trains
recorded during the 1966 Mono Lake test series (Pollard ard Wallace,
1967). (The standard subsurface prediction [b = 1. 6 YO" 24, r = 10 Yo' 3]
would have given uniform maxirnum envelope amplitudes M, = 0. 38 ft.
at r = 3600 ft, thus over-predicting for the shallower shots by about

22% and 35%, respectively. This is necessarily the case with scattered

data; the prediction must cover the possible maximum case.)
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11-3 SHALLOW WATER WAVE GENERATION

Interest in shallow water generation stems from the fact that, although

the wave-making efficiency is smaller than that for an equivalent explosion
in deep water, a greater fraction of the resulting wave energy goes into
the leading waves of the train. This is because the cavity radius, which
controls the wavelength of the principal waves (Eq. II-27), is substan-
tially independent of the water depth. Moreover, because of their low
steepness ('qm km <h km < 1), such waves are less apt to break on

gentle slopes, and hence are potentially capable of a higher absolute
shoreline run-up than stzeper waves of the same height. Thus, the
tendency for greater run-up is opposed by decreasing available wave
energy as the generation depth decreases, and it is desirable to inquire
whether the absolute run-up will increase or decrease ia =zuch cir-
cumstances.

While the deep water prediction model becomes invalid for h < 6Y0' 3
a general theory exists for shallow water generation (Kajiura, 1963).

As with deep water generation, however, an acceptable prediction

model must be normalized to an extensive set of experimental data.
Unfortunately, present data are limited to a single small test series

with 4- Ib TNT charges (WES, unpublished) and two 9,250 1b. shallow
water shots during the 1966 Mono Lake tests (Wallace, 1967). Figure

11- 8 ghows the available data compared with that for deep water. The
former have roughly the same charge depth dependence, but the nmr/YO' 54
values are only about half as great as the median (heavy) line for deep
water tests. Although the WES original records are not yet available
for analysis, Fig. lI- 9 shows the published wave records for shot 2
of the 1966 Mono Lake shallow water series (Wallace, 1967). As dis-
tinct from deep water records at similar distances, the wave trains
are characterized by a large, long leading wave, followed by a series
of shorter waves, whose amplitudes increase and then decrease with
time. Such wave trains can be shown to be predictable by shallow water
generation theory of Kajiura (1963).
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11I-1 UNIFORM WATER DEPTH

When the water depth is uniform, or deep enough, relative to the ex-

. . . 0. :
plosion yield th >6Y j) so that the principal waves are unafiected by
the depth the wave system will have circular symmetry. The general

characteristics of such an expanding wave system will resemble those of
Fig. I-1.

As in the theory for wave generation discussed in Chapter II, the local
wave amplitude at any place and time is calculated by summing the
Fourier components which arrive simultaneously from all of the ele-
mental regions comprising the source disturbance. The wave amplitude
is a function of the local energy density, considered to be the property
of an energy packet bounded hy adjacent rays radiating outward at group
velocity in the direction of the rays. The procedure is appropriately
called the conservation of energy flux. Thus, the amplitude, of any in-
dividual wave is not a property of that wave, butwill vary according to the
wave amplitude envelope as each wave passes through. In order to
determine the amplitude of any particular wave at a given point or time,
one must fir st determine when the wave will arrive at that point,
determine its local frequency from the dispersion relation (Eq. II-2),

and then compute its amplitude from the general formula (Eq. 1I-18).

The local wave position is determined from the phase function (Eq. II-6).
While it is known that the wave phase at a given point shifts by as much
as 186° as the charge depth is varied, this shift is ordinarily of no
importance to wave effects, and is ignored in the following discussion.
Thus the calculated instantaneous position of any particular wave in the
engsemble passing a given point will be uncertain with a half-wavelength
or so, or its arrival time uncertain by half its period. This uncertainty

will not ordinarily affect the local amplitude.

At any point in a space-time cocrdinate plot of an expanding wave train,
any wave can be identified by the position of some point of constant phase :

(say, the wave crest), usually by assigning it an order number n, reckoned
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inwards toward the source from that crest nearest the wave front. The

locus of such points is called a phase trajectory, two of which are shown
in Fig. I-1. Since a point of constant phase (point phase) is defined by
cos {ut - kr) = m = constant, wave crests will occur when m = 1, and

the crest order numbers will be given by

wt - kr = m{2n-1) n=1,2, ..., p (III-1)

In view of the auxiliary equations for group velocity and frequency for a

point of stationary phase,

v o= e/t = /2K (1 +2kh/sinhzkh)=%1%’- (111-2)

wz = gk tanh kh

Equation (liI-1) can be revised tc a pair of equations relating n and r

or t to the wave number k and the (constant) water depth h.

T (2n-1) _ [1 - 2kh/sinh 2 kh
r = k| TFZ7knh/sinh 2 kh. (I1I- 3a)
1
-’1———'—(2’2' b % (gk tanh kh)Z (1 - 2kh/sinh 2 kh) (IIL- 3b)

-

Eguations (IIl- 3) might be called the field equations for wave number in

the r-t plane (similar to R-T plane). Knowing either r or t, hand n, k

can be found from a curve or table, and the unknown vaiiable determined by
substitution. More commonly, h, r, and t are known and n is desired. In such
cases, no exact solution is possible, but the closest integer value p(n)

can be found by determining k from KEq. (JII-2) and substituting in either

of Eqs. III-2..

Simplifications of the above procedure can be made when the
water depth h is substantially greater than the wavelength L at the

frequency considered, as defined by

kh = 2nh/L> 3 (deep water) (111~ 4)




Ia this case, Eq. (III-3) becomes

1
n(2n-1) = kr = = (gk)? (I1-5)

N er

from which, by eliminating k,
2

m(2n-1) = % (I1I-6)

Thus the trajectories of individual waves in the r-t plane are first order
parabolae, whose consecutive arrival times at any point, R will be

in the ratios

S N

.. etc.

Similarly, at any instant of time, T , the consecutive crest radii will

have the ratios

R:R /3: R/5 ... etc.
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1lI-2 NON-UNIFORM DEPTH

III-2. 1 Method of Approach

There is no uniformly valid theory for predicting the evolution of an ex-
plosively-generated wave system in water of non-uniform depth. This
is because depth variations act to disturb the uniform radial flux of
energy and speed of wave propagation by processes of refraction and/or
reflection in a manner too complicated to permit simple generalization.
Morecver, these perturbations depend upon the local wave frequency,
which, itself, is varying with time. Lastly, such nonlinear processes
as finite wave height and frictional dissipation, that can be ignored in

deep water, must be considered in shallow-water propagation.

As a result, in order to make meaningful predictions, a piece-wise con-
tinuous computation scheme is used, (see Section III-3.2), by which
energy and waves can be propagated over a greatly simplified step-like
topography, suitably selected to approximate the actual sea floor over a
limited region. The validity of such a model depends upon a number of
simplifying assumptions or approximations, each of which have been
separately investigated. The most important of these factors are reviewed
in the following sections. Because of the greater simplifications afforded,
in most previous theoretical and experimental work, it has been assumed
that the waves are periodic. While ultimately, one has .o rely upon a
theory valid for dispersive waves, the importance of wave reflection,
nonlinearity, and bottom dicsipation can more easily be assessed by

assuming that the waves are quasi-periodic.

III-2. 2 Wave Reflection

The many theoretical attempts to derive a suitable formulation for the
reflection coefficient for periodic progressive waves in water of non-
uniform depth have been reviewed by LeMehauté (1966). Of these, the
work of Miche (1944) and Roseau (1952) have the most general application
to the problem of explosion waves advancing shoreward from deep water.

The Roseau theory applies to a particular family of bottom profiles, some
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of which quite closely resemble the continental shelves and their terminal
escarpments. Application of this theory to the explosion wave problem
(LeMehaute, et al, 1965) indicates that the correction for wave reflec-
tion by the continental slope is insignificant for all frequencies of
practical interest, even for the long leading wave. In the limiting case
of amall reflection, the Roseau theory tends to the linear conservation of
energy flux (in one dimension). This conclusion is further supported by

wave tank experiments (LeMehaute, Snow, and Webb, 1966).

Since the reflection coefficient for waves advancing at oblique incidence
will always be less than that for normal incidence, the effect of reflection .

is ignored in the present prediction model.

II1-2.3 Wave Shoaling and Peak-Up Phenomena

The method of conservation of energy flux is one of several approximate
methods available for calculating the transformation of a wave propagating
from deep water to the shore. It has the advantage that it is easily applied
to practical predictions. This method assumes a priori that there is no
friction either internally in the fluid or at the boundaries. .Moreover, it
is assumed that there is no reflection of the wave energy due iv the
sloping bottom, and that the wave motion may be described locally by |
the solution to the corresponding problem for a horizontal bottom.

Caldwell (1949) showed experimentally that reflection is negligible

for slopes less than 4.5 degrees. Roseau (1952) substantiated this finding
theoretically.

This method has been used by numerous investigators to obtain the trans-
formation of waves. Some differences between these various investigations
are attributable to different mathematical approximations for the waves.
The simplest case is when the wave is taken to be a linear progressive
wave. In this case the shoaling coeificient H/Ho is a function only of the

group velocities v_and v in deep and shallow water, respectively.

o

1 1
H v 2 - . -5
T ° l:—;,—]‘ = [tanh 0 (1 + 20/8inh 20)] 2 (II1-7)
o o
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For waves of finite .. .ght, .nore precise methods are required. By

taking the third order gravity wave theory, LeMehauté and Webb (1964)
computed the transformation of waves, assuming conservation of energy
flux. Their results indicate a larger shoaling coefficient than pre-

dicted by the linear theory (see Fig. III-1 and I1I-2), and the deviation
increases with increasing deep water wave height, Ho. The same trend
(i.e., larger shoaling coefficient for larger initial wave height) was
obtained from a similar analysis, using the fifth order theory (Koh and
LeMcehaute, 1966) as shown in Fig. III-3, but the fifth order wave theory

is not applicable when the water is too shallow. This is because at shallow
depth, we have exceeded the limit of applicability of the Stokes wave theory
since the series is non-uniformly convergent. (Actually, the fifth order

theory ceases to be valid for ¢ > 0.6.)

Basically, the problem of wave propagation, as investigated herein, possesses
three geometric characteristic lengths: namely, the depth h, the wavelength
L, and the wave height H. From these it is possible to form two dimension-
less quantities H/L and H/h. The {fifth order theory expands the solution,
using essentially H/L as the paraincter ol expansion, without paying much
attention to the other parameter, H/h. It was implicitly assumed, therefore,
that in the theory the quantity H/h is unimportant. In the present investigation
of wave shoaling, this quantity is certainly not uniformly small in the

physical region of interest. In particular, for small depth (and hence

larger H/h) the fifth order theory appears to be a poorer approximation

to experimental results than the corresponding third order theory. In

the limit as h # 0, the third order theory is poorer than the linear theory.

It is concluded that the third order results should be used for calculations

of wave shoaling, where extreme accuracy is desired, but that the first

order theory is adequate for most cases where the topography is imper -

fectly known.

Wher waves arrive at a depth smaller than approximately 1. 4 times the
breaking depth, a sudden increase in wave height is observed experimentally
(LeMehaute, Snow aud Webb, 1966). Figure IlI-4 illustrates this phenomenon.
Even though the general results given by previously mentioned nonlinear

wave theory indicate this trend, there is presently no satisfactory theory
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which can match the experimental facts, although Van Dorn (1966)

suggests that such a peaking up is to be expected for waves on a slope

. when the local Ursell parameter % (—{_—';—) 2 > 100. As a practical ground f_
rule, we can consider that the wave height suddenly increases prior to

. breaking by a factor of 1.4 above the value given by conservation of energy
flux,
I11-2. 4 Reating Phenomena Due to Reflection

While reflections can generally be neglected in waves advancing from
deep to shallow water over the continental slope, upon reaching the shore-
line, a dispersive wave train is, to some extent, reflected seaward; the
leading portions arriving back at any intermediate relevant point before
later portions have yet passed that point on the way to the beach. That is,
the observed offshore surface motion consists of a quasi-standing wave
system, composed partly of incident waves and partly of reflected waves,
the exact motion depending on their relative heights and phases. Hence,
we see a beating effect at various offshore points. It is to be noted that
the envelope of the run-up history does not evidence such beating, since

there is always an antinode at the shore,

The beating phenomena associated with reflection of dispersive wave trains
has been theoretically investigated (Le Méhauté, Hwang et al, 1967) for
the case of total reflection, corresponding to non-breaking waves. The
wave pattern was calculated at various distances from the shore, and it
was found that the irregularities due to superposition of the reflected wave
increases as the distance from the shore increases. Figure III-5 is an
example of a computed time history for an offshore -poiut, and shows a

beat superimposed on the normally smooth modulation envelope.

This result is confirmed by the experimental observations of Van Dorn

(1966). Figure III-6 shows dispersive waves (records made at four positions)
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in a tank with a sloping beach. Results are shown for several water
depths along the slope, and it can be seen that the beats are most pro-
minent at some distance from shore, tending to lessen in very small
(near-shore) depths. The asymmetry of the shallowest record is due
to wave breaking.

If the waves are breaking, this beating phenomenon will be attenuated,

but there will still remain some residuval discrepancy between the un-

reflected theoretical model for the incoming wave and the measured one,

since beaches never totally absnrb wave energy.
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111-3 PRACTICAL METHOD OF CALCULATION OF-DISPERSIVE
WAVES WITH NON-UNIFORM DEPTH

IlI-3.1 Wave Transformation - Basic Principleg

With non-uniform depth, wave generation can still be computed by the
methods of Chapter 1I, and the local wave amplitude determined by the
conservation of energy flux, but the procedure is more complex. Where-
as in uniform depth both frequencies and phase points propagate in co-
incident straight lines, when the depth is variable not only do frequencies
and (constant) phase points propagate at different - and varying - speeds,
but, in general, by different paths; moreover, these paths are no longer
straight lines, but are curves that must be separately determined
prior to the amplitude computation. These curves have, somewhat
loosely, been given the name rays, and no confusion results

from this terminolcgy in the case of monochromatic wave systems,
wherein a moving phase point (say, a wavecrest) is always associated

with a constant frequency. In a dispersive system, however, the distinction
must be made between the propagation paths for frequency elements

and phase points. The word ray will be defined here as the curve gen-
erated in a space-time coordinate system by an energy packet propa-
gating at group velocity, while orthogonal refers to the analogous path

for a phase point moving at phase velocity. Both the rays and orthogo-
nals have in common that the travel time for frequencies and phase points,
respectively, is a minimum between any two points on these curves; this

statement is, in fact, a definition of a ray in geometric optics. .

In order to determine the spectral energy at a remote point in water of
variable depth, then, one must first determine the rays connecting the
source and the point of observation for a given frequency, and then integrate
the equation (Eq. II-1) for this frequency along the ray to find

its arrival time. Since, in a continuum, energy is considered to

be conserved within a wavepatch bounded by adjacent rays and adjacent
frequencies, the above process is then repeated with small changes in the

ray direction and frequency in order to determine the energy intensity at
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the observation point. This procedure must be repeated for enough fre-
quencies to define the energy spectrum of the disturbance as a function of

frequency and time.

In an entirely similar fashion the phase of the disturbance can also be
determined as a function of time by computing the required orthogonals,
and then integrating (Eq. II - 5) along them to determine the arrival

times of the consecutive phase points. Although, in principle, the com-

putations must again be repeated for each of the elements comprising
the source, for remote observation points the travel paths will be sufficiently

similar that this latter complication can usually be avoided.

It is apparent from the foregoing that the task of computing the wave
history at even a single observation point is apt to be very complicated

and laborious. Although the differential equations for the rays (II-7} can be
written down in the most general form, they cannot be snlved explicitly

for arbitrary topography. No similar equations exist for finding the
orthogonals. In general, the rays and orthogonals must be found by
graphical constructions on a trial-and-error basis or computed by iterative
numerical techniques for each frequency concerned.

"

Fortunately, however, as in the theory of generation, si {ying assumptions
! make possible quantitatively satisfactory calculationsof+ :characteristics
! in regions where they can be justified. These assumptions, in order of

consideration, are:

1) That within an angular zone of interest with its apex at the
explosion point all depth contours can be approximated by

straight lines.

2) That the laws of geometric optics apply to the construction
of wave rays and the coniputation of wave armnplitudes. These
laws essentially require that the wave amplitude be small enough
: so a8 not to affect the wave speed; that the water depth does not
change by a significant fraction in a wavelength at any fre-
quency considered; and that the local wave speed be equal to

that if the local depth were uniform everywhere.
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3)

I11-3.2

iII-3.2.1

That the distance along a ray connecting any two points does
not differ significantly from that along an orthogonal connecting
the same two points; that is, that phase travel times may be
computed by integrating along a ray in lieu oi constructing

separate orthogonals.

Practical Method of Calculation

Outline of Procedure

The following simplified procedure (Van Dorn, unpublished, LeM¢éhauté,

Hwang, et al 1967) can be used to compute the wave characteristics at any

place or time following an explosion, subject to the above assumptions.

1)

2)

3)

4}

5)

The wave envelope spectrum obtained from Eq. (II-18) is first
subdivided into a number of component frequencies w., each
identified by an initial amplitude nl(wi) in water depth h.1 at
the explosion site, which is taken as the origin of cartesian
coordinates for further calculations with the x-direction shore-
ward.

The region shoreward of the explosion point, 0', assumed to
be the area of interest, is subdivided into zones radiating from
0', and a suitable number of depth contours are approximated
by drawing straight lines Ci across each zone (Fig. III-7).

A family of wave rays for each above frequency is then computed
to further subdivide each zone. Such subsets of contours inter-
sected by refracted rays comprise elemental regions within
which energy is to be conserved for each frequency.

The wave amplitude at every contour is then computed from

the conservations of energy flux, as well as its arrival time,
wavelength, period, and other number by which the local wave
phase can be identificd. Test criteria are also applied to
determine whether the local wave phase is stable and satisfies
the assumed linearity conditions (IV-2), or whether it breaks
and must therefore be treated differently.

Step 4 is then repeated contcur by contour until some reference
contour near shore is reached, after which the run-up can be

computed by the methods of Chapter V.

58

Ml S ARE o 8 T




>
»
7]
c
m
o
»
&
D
m
L

WA

seyg saepm JO UOTIEINO[RD) IO0J PIs[] UolleloN [-IIT @24nSr g

(1 X O | X) durf2a0ys pawnsse ayj je ‘Q ‘puoda3s
i 9y3 pue (4 ,0 ¥) uolsojdxs ayj jo uoredoy 3Y3 3 ,0 ur8tic 1511y 3y
YIIM UOIJe[NOTED dYj UI PasSn dI' SWII}SAS 3JBUIPIOOD JUIIIJJIP OM], 30N

59

A-2 -880

A e s

i
1
1




6) Steps 5 and 6 are then repeated for each ray and each fre-
quency to determine the time history of the wave field as a

function of distance along shore within each »one.

- In general, each such calculation differs from every other, which ex-
plains why the prediction of wave characteristics over complex topography
cannot be generalized in any convenient fashion, although the gross results

can be presented ultimately in relatively simple form.
II1-3.2.2 Computation of the Ray System Within a Zone

As a frequency element propagates at group velocity towards shore it will be
refracted according to Snell's law for geometric optics. Figure III-7 illustrates
the segmental refraction of a ray originating at 0' at an angle § ) to the
shoreline uusiual 0'-x. The ray is approximated by straight line segments

r, in crossing the intervals between discrete contours Ci’ each of which
intervals is assumed to have a uniform depth hi’ until it eventually reaches

a limit contour Cs beyond which the two-dimensional theory of run-up takes

over.

- Adopting the nomenclature of Fig. III-7, one can calculate aray path as
follows. Let Q(xn, yn) denote the point of intersection between the ray
and the nth contour. Then the nth coordinate of the point can be related to
the previous coordinate by

x = Pp- [Yn-l © *h-1 tan (o‘n-l * en-l)] sin Q.
n cos a’ + sin ar tan (a‘n-l + en-l) (1II- 2)

Yo S Vpoa ¥ - %, y)tanlal v ) (11-10)

and the distance between points Q(xn-l’ yn-l) and Q(xn, yn) is

1
i 2 2 72
ar, = [(xn - xn-l) * (yn N yn-l) ] (- 11
" The relationship between 81 and Pn is given by
v
- - N -1 n+l . ’ » .
Pn = gin [ vn sin mn-l + gn_l - qn)] (11-12)
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dk
n

- . _rh =-nh ) o -0 ‘
Vn+1/vn dkn+1 = [hn -hn'l-, ] [ n-1 n J (III— 1 3) -
n-1""n Cn"%n+1

is the group velocity ratio across the corresponding contour. * The time

required for propagation across Arn is

or 24 r
At = —— = T (LI-14)
n v, (ghntanh on) 2 (1 + Zon >
o sinh 2¢
and the total propagation time from surface zer8 to point (xn. yn) is
equal to the cum of the propagation times across Arn; that is
n
t = ¢ At (III-15)

=1 )

III-3.2.3 Wave Amplitude Change Along a Ray

The chenges in wave (spectral) amplitude associated with propagation of a
wave packet of constant frequency in water of variable depth has been
given for the special case where the direction of propagaticn is normal to
the bottomn contours (Van Dorn, and Montgomery, 1963). In such cases the

congervation of energy flux is given by:

T 1

%ﬂg = nlz [kof %’LJ . [v‘l ﬁr -aal: (2;12 )dr ]= constant (I1I-16)
r r
o o

Where E(y) is energy per unit frequency, and r is distance measured from the
origin along a ray. The first factor in brackets givesthe effect of ray separation

(geometric spieading) and the second factor the effect of dispersion (fre-

quency separation).

* The group velocity is used here instead of phase velocity because an
energy packet of constant frequency is being refracted instead of a point
of constant phase.
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In the coordinate system of ¥ir III-7, the amplitude changc 1n going from

the origin r to the point r = r. can be written as

r. V B
i 1 2
n=n, = (I11-17)
IA"[V kz(l/k) za ]

[ _, B

where Ar is the interval between two contours, ﬂ [k(h)] =3 (1/2 v.z)/ak.

1/4 -k /sinh 2k, -k’ h (1-2 cosh 2k;h, )/sthZk h,

-18./(g tanin k)] | L] (r-18)

(1 + Zkihi/sinh Zkihi)’

and, again, ki(hi) is obtained from

w? = gk, tanh kb,

When the rays are not normal to the contours, the effect of refraction can

be included by multiplying (III-17) by the ray-spacing factor

cos 8 ﬁ-;-
1 (1I1-19)
iy
appropriate to each successive contour.

Recalling, now, Eq. (II-18 for the wave amplitude n(w) in water of uniform
depth h, the corrected spectra! amplitude n after crossing the ith contour
and traveling a total distance r, = %1‘. Ar along the jth ray will be, upon

substitution for w and t their equivalent stationary phase formulae

bro -v /k
nilwy) = ¥ L4y, /dk ] I3 (ry k)
L ) )
cos 6. B (v, /v.)? 3 (II1-20)
. [ 1 ]

o8 O, ,I
cos B kl}l-r(llkm) 28

m
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i
and its time of arrival t, = % Ai/vi’ The wave order number
corresponding to the frequency w; will be the integer nearest to

i 1+2k.h, _3
11

f = O N S, -
| Niw;) = sark; T7hE, (II1-21)

A schematic drawing used for such a calculation is shown in Fig. III-8,
where 7 frequencies are shown initially propagating at an angle 6§ with
shoreline normal 0'-0. Each frequency follows an independent path.
Since each has its own initial amplitude, it will have a unique amplitude-
distance history (shown above schematically for the highest waves) and

break at a different point. In this example, the contours are z ssumed to

be parallel to shore. A more realistic case would show more irregular

rays and more variation between them.

The actual breaking point and subsequent history of each wave in very
shallow water can then be treated by methods discussed in the following

chapters.
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CHAPTER 1V
SHALLOW WATER WAVES
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Iv-1 INTRODUCTION

Waves in shallow water are important to the purposes of this handbook

for several reasons. Firstly, the wave height gencrated in deep water

usually amplifies as the wave propagates toward shallow water. It has
been shown (Le Méhaut€, et al., 1967) that the wave-making potential

of very lai'ge explosions is sufficient to produce abnormal breaking in
relatively deep water on the continental shelves, thus posing operational
problems for ships and submarines. Secondly, the abnormal waves are
potentially capable of producing semi-permanent local changes in under-
sea sedimentary deposits through the processes of erosion and wave-
induced littoral transport. Any such changes are undesirable from the
standpoint of navigation and possible damage to cables or other undersea
installations. Lastly, the understanding of wave propagation in shallow
water and its breaking is of primary importance in the prediction of
wave run-up on the shore. Thus an understanding c¢f the wave behavior
in shallow water, such as velocity field, breaking, breaking wave pro-

pagation and its effects, is of great importance.

ol e i Eo
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Iv-.2 THE ESSENTIAL CHARACTERISTICS OF WAVE THEORIES

Ship and submarine motions are dependent upon the velocity and acceleration
fields of the wave environment. If one wants to investigate the motion of

a ship, it is, therefore, important to find out which theory can best
represent the wave motion. Before an appraisal of the validity of different
wave theories, let us give a brief discussion of the essential character-

istics of wave theories which are commonly used in practice.

1. The linear theory of Airy in Eulerian coordinates gives the
esgsential characteristics of the wave pattern in a simple formulation:
the free surface is sinusoidal, particle paths are elliptic and foliow a
closed orbit (zero mass transsort); lines of equipressure are also

sinusoidal. The terms in (% 2 are neglected. (See Stoker, 1965.)

2. The linear theory of Airy in Lagrangian coordinates gives also
elliptic particle pathe, but the free surface and lines of equipressure

are now trochoidal, as in the wave theory of Gertsner (Biesel, 1952).

3. The linear long wave theory is the same as the theory of Airy
where it is assumed that -E is small; as a consequence, the formulae
are simplified considerably. The pressure is hydrostatic and the hori-
zontal velocity distribution is uniform. The wave velocity is simply

JEgh (Wiegel, 1964).

4. The theory of Stokes at a second order of approximation is
characterized by the sum of two sinusoidal components of period T
and -‘% T respectively. As a result, the wave crests become peaked
and the troughs become flat*er. The wave profile can even be char-
acterized by the apparition of a hump in the middle of the wave trough.
Similarly, the elliptical particle path is deformed and tends to hump
under the crest and flatten under the trough. In this theory as in all
the following wave theories, there is mase transport as a result of

irrotationality and nonlinearity. However, phase velocity, wave length
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and group velocity are the same as in the linear theories. The terms

3
in (%) are neglected. (See Wiegel, 1964.)

5. The theory of Stokes at a third order of approximation is

characterized by the sum of three sinusoidal terms of period T,

1 1. respectively. The same logical results are found.

3
Phase and group velocity exhibit nonlinear corrections. The coef-

T, and

ficients of (-}E) which are functions of -E tend to infinity when T}:
tends to zero so that the theory cannot be used in very shallozv water.
The series is non-uniformly convergent. The terms in \%) are

neglected. (See Skjelbreia, 1959.)

6. The theory of Stokes at a fifth order of approximation is the sum
of five sinusoidal terms. The coefficients of /\TH_)n are functions of

-}I.l, and tend to large values for n >3 even sooner than in the case of the
third order theory (n = 3), i.e., for larger values of % Conseqguently,
the fifth order wave theory is less valid than the third order wave theory
for small values of % and cannot be used when —E< 0. 1. The terms in

(IE{) are neglected. (See Skjelbreia and Hendrickson, 1962.)

7. The theory of Keulegan and Patterson belongs to the cnoidal

family of water wave theories. It follows the same physical approach

as the theory of Korteweg and de Vrieg (1895). Froma purely mathematical
viewpoint, there are some inconsistencies as some third order terms

are included whiie some other second order terms are neglected; how-
ever, it gives apparently good results. The horizontal velocity component

varies with depth. (See Keulegan and Patterson, 1940.)

8. The cnoidal wave theory of Laitone obeys a rigorous mathe-
matical treatment: at a first order of approximation, the vertical
distribution of horizontalzvelocity is uniform. There is no mass trans-

port. The terms in (I-E/ are neglected. (See Laitone, 1961.)

9. The theory of Laitone at a second order of approximation gives

a non-uniform velocity distribution. There is mass transport. The
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vertical distribution of mass transport velocity is uniform The second
order term becomes larger than the first order term as 'E' increases.
(3 is not necessarily a small parameter as -IE always is.) The series
is non-uniformly convergent. The terms in k—K are neglected. (see
Laitone, 1961.)

10. The solitary wave theory of Boussinesq is the result of a purely
empirical approach. The vertical component of vel ocity is initially
assumed to be linearly distributed from the bottom (equal to zero) to

the free surface (equal to the linearized free surface velocity 31n/9dt).
The vertical distribution of horizontal velocity is assumed to be uhiform.
As a result a correction due .0 path curvature (vertical acceleration) is

added to the hydrostatic pressure.

The equations of motion are linearized vertically bui remain nonlinear
horizontally, i.e., convective inertia terms where the vertical com-
ponent of velocity appears are neglected, but the product uu_ remains.

The solution is then exact.

As in any solitary wave theory, N has always a positive value and there
is mass transgort equal to the volume of the wave above the S. W. L. The
terms in (%/ are neglected. (See Munk, 1949.)

11. The solitary wave theory of McCowan obeys a more rigorous
treatment and satisfies the kinematic free surface boundary cendition
exactly. It corresponds to a higher order solution of the theory of
Boussinesq. The vertical distribution of horizontal velocity is non-

uniform. The terms in <%)3 are neglected. (See Munk, 1949.)

12, The theory of Goda is actually an empirical modification of

Airy theory and considers only the horizontal particle velocity. (See
Goda, 1964.)
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Iv-3 THEORETICAL DETERMINATION OF VALIDITY OF WAVE
THEORIES

’

While a universal theory which will be valid for all values of h/L,
H/L and H/h does not exist, it is to be expectéd that some may

present a better fit than others within certain ranges of these parameters.

The limit of validity of the linear wave theory depends, of course, on
the relative importance of the nonlinear terms. Since the second
order term of the theory of Stokes is a nonlinear correction to the
first order term obtained by linear approximation, one can have a
realistic appraisal of its importance by assessing the value of the ratio

of these terms quantitatively.

The potential function for a Stokes wave or irrotational periodic gravity
wave traveling over a constant finite depth at a second order of approxi-

mation is found to be (Wiegel, 1964):

_ HQ cosh k(z+h) -
¢ = - S oSPrrEeos (lx - wt)

(I-_-I)Z p Sosh 2 kizth)

T cos 2 (kz - wt)
sinh™ kh

3
*3

The series being convergent, and since the term in H is the solution
obtained by taking into account the local inertia only, while the term in
H2 is the first correction due to convective inertia, i.e., the most
significant one, the relative importance of the convective inertia term
can be described by the ratio of the amplitude of these two terms. In
particular, in very shallow water, since cosh kh —+ 1 and sinh kh—* kh,
it is seen after some simple calculations that the ratio of the amplitude

of the second order term to the amplitude of the first order term is

TR 1)
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valid., The group denoted by UR is known as the Ursell parameter.

If, instead of H, one uses the maximum elevation L above the still
water level (M, is equal to H/2 in the linear theory), the so-called
Ursell parameter initially introduced by Korteweg and de Vries is

obtained (Korteweg and de Vries, 1895). When % (-IF;-'/ << 1, the
linear small amplitude wave theory applies. In principle more and
more terms of the power series would be required in order to keep

the same relative accuracy as the Ursell parameter increases.

Also, in the case of very long waves in shallow water such as flood waves,
bore, nearshore tsunami waves, and, in the present case, explcsion

waves, the value of the Ursell parameter which is supposed tc be >>1

depends upon the interpretation given to L. The reiative amplitude

% is then a more significant parameter for interpreting the importance

of the nonlinear terms. In this case the vertical component of inertia

force is negligible and the only term for convective inertia is pu e
Then it is possible to calculate the ratio of amplitude of convective inertia
to the amplitude of local inertia (D u-g—-:/p _ba_%) directly. Since in very
shallow water -lﬁ is very small and cosh kh 1 and sinh kh = kb,

one has simply (here u is the horizontal velocity):

u = -9—- = -?-E% sinh (kx - wt)

9

ERE ]

and it is found that

Puau
Hmax _ H
—;-3?1_— - Zh
ot
max

which demonetrates the relative importance of the ratio % Despite
these difficuities of interpretation, the Ursell parameter is a useful
simple guide, but is not necessarily sufficient for judging the relative

importance of the nonlinear effects.
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Dean (1965) has attempted to determine the limit of validity of wave
theories on the basis of the best fit with exact boundary conditions.
According to Dean, this method has been successful for deep water

wave conditions. However, for shallower water conditions, it appears

that the error must be extremely small to be a reliable indicator of
wave theory validity. In a word, the experimental results presented in
a later section are the best methods for determining the validity of

shallow water wave theories.

The above discussion summarizes the wave theories developed for non-
breaking waves. The condition that the wave breaks and its breaking
location have been investigated extensively for many years. A brief

discussion of this topic is given in the next section.

72




IV-4 BREAKING CRITERIA

As waves propagate into shallow water, depending upon the bottom pro-
file and their previous history, they will either break or surge up the
beach. Occasionally, as was observed during the 1966 Mono Lake
tests, an intermediate situation will arise wherein a wave will become
unstable without breaking, but instead split into a succession of
smaller undulations which travel together towards shore. Wave
splitting has also been observed experimentally, but is so far un-
explained. Since it will always act to lessen run-up, further con-

sideration here is unwarranted.

Despite extensive efforts, and probably because of the large range of
variables and its inherently nonlinear character, no uniformly satis-

factory criterion for wave breaking has evolved.

For a variable offshore slope a, Keller (1961) has shown that both the

linear and nonlinear small amplitude wave theory predict breaking when

2 rv %
”Ixi. = Jz—ncl :??['vg] (LV-1)

As the depth becomes large, H—* Ho’ L= Lo’ (vo/v) - 1, formula
(IV-1) differs only by the factor, -;-. from the stability limit proposed
by Miche (1951) for relatively steep slopes

20 sinza
- /_n_ e (Iv-2)

Figure IV-1 compa es these results with experimental data and it can be

H
o

O "‘max

seen that the thec.y generally allows steeper waves than are observed
experimentally for moderate alopes, but that Eq. (IV-1) gives good results

for relatively small slopes.

Figure IV-2 compares the above two criteria with a time history of the

(one-dimensional) shoreline oscillations from an impulsive disturbance,
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EXPERIMENTS ON STEEP SLOPES
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as computed from the theory of Carrier and Greenspan (Le Méhaute

and Hwang, 1967). Perhaps significantly, instability develops in the
computer solution midway between the Keller and Miche breaking criteria.
This result shows the consistency of quite different theoretical models,
and supports the previous assumption that theories developed for

periodic waves are still valid for dispersive waves.

For a uniform bottom of depth h terminating in a uniform slope a,

Keller and Keller (1964) give the stability limit

.

-2
g 2(a/0%[7 F20/a) + le(zn/a)] (IV-3)

where (1 ig the dimensionless wave frequency, as definedin Chapter II.

In the same notation, Eq. (IV-3) can be compared with the empirical

formula of Hunt (1959)

2
% 2 é-g— (tan a./ﬁ)2 (1v-4)

which is numerically very similar over a wide range of slopes and
periods. Varn Dorn (1966) has shown that Eqs. (IV-3) and (IV-4)
acceptably divide breaking from non-breaking waves for a very large
class of laboratory experiments with n/2 >a>mw/100.

While the above formulations provide a means of predicting, under rather
special circumstances, whether or not a given periodic wave will break,
they say nothing about the location of a wave at the instant of breaking.
For lack of a valid breaking theory, and good experimental results, the
breaking location for periodic waves is not well defined. However,

numerious experimental data for solitary waves suggests that breaking

H

occurs at =2 = 0.75 + 25 S for S < 0. 1 (Street and Camfield 1966). Since

hy,

the continental slopes, S, are of the order of 10-3, the approximation
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= 0. 78 is probably adequate for the calculation of the extent of the

7"

o

reaking region.

After breaking inception, the subsequent wave history will vary with
local conditions. That is, should breaking inception occur on the con-
tinental alope or at some other location where the bottom slope is steep,
one might see the so-called "plunging'' breaker. In this case, vessels
near the breaking inception point would experience the most violent
environment. On the other hand, perhaps more likely, development
may occur as a ''spilling' breaker on a very gentle slope. In this case
conditions would be relatively uniform within the entire breaking region.
Whether violent 'plunging' or more gentle "spiliing'' development will
occur at a particular location can be determined through consideration
of the local bottom slope and the deep water wave steepness. Figure
IV-3 (Wiegel, 1964) illustrates three breaking classifications and in-
dicates their dependence on slope; application requires wave-by-wave
consideration at each breaking point. It appears that, in general,
spilling breakers would occur in most cases, although this matter
should be investigated further. Surging breakers are not to be expected

in most ccastal environments.

Once breakers are developed, they then enter a second phase of long
duration characterized by an essentially stable pattern of propagation.
That is, they progress as peaks of water separated by long flat troughs,
sometimes followed by secondary undulations, dissipating their energy
through breaking to maintain an essentially constant height to depth
ratio. As they break, they leave behind a fraction of their momentum
and volume; in this way, they are responsible for the phenomenon of
wave set-up, a slight rise in the mean water level near the shore;

this phenomenon will be discussed later.
In this latter regime, the processes of shoaling, energy dissipation

through breaking, and bottom friction dissipation are in balance to

maintain the breaker's form. It may happen that these effects and also
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divergence of wave orthogonals through refraction, will cause a breaker
to stop breaking, perhaps even separate into new waves, then reform

and continue breaking toward the shore. Due to its relative importance,
a detailed analysis of the change in breaking wave height H as the
breaker proceeds toward shore is presented in the following section.

It can be seen that, after a fast initial decrease in height near the
breaking depth, hb’ the assumption that H/h is constant is sufficient
for providing a first order of approximation of the breaker height. A
more detailed investigation, where both the degree of breaking and bottom
friction are incorporated into a theoretical model of the hydrodynamics

of the breaker, gives a more complex variation of the breaker height.

79

e - = o s o i

[,



IVv-5 VELOCITY FIELD

During the phase of breaker propagation, the velocity and acceleration

fields are of interest in order to establish resulting ship motions.
Miller and Zeigler (1964) have performed a field experiment on measure-~ i
ment of the velocity field. An example of the results is shown in Fig.
IV-4, illustrating the '"very asymmetric' breaker, one of three classes
found by Miller and Zeigler and said to correspond to a spiliing breaker.
It should be noted that in this study, backwash from the beach is of great
importance, distorting the observed velocity field and wave profile,
whereas, in the case of explosion waves on the continental shelf, back-
wash will not exist during most of the breaker propagation. Further-
more, the experiments have been performed on relatively steef slopes
encountered on beaches in contrast to slopes of continental shelves.

For these reasons, it is thought that these experimental results are not

applicable to the determination of velocity field on the continental shelf.

An experimental program for measuring velocity profiles has just been
completed at Tetra Tech (Le Méhauté, Divoky and Lin, 1968). Figures
IV.5 through IV-8 represent a sample of this study. Figures IV-5 and

IV-6 indicate a comparison of horizontal particle velocity with existing

theories for non-breaking and near-hreaking waves. Figure IV-6 shows !

the horizontal velocity under the crest for a breaking wave, while Fig.

'IV-7 showe a comparison of experimental results with different theories
i for the vertical particle velocity. The results of this study can be

summarized as follows.

i For non-breaking waves of the shortest period (length), Airy theory best

agrees with the data. However, as the wave becomes longer, the data

moves away froem Airy theory which is superseded by Keulegan and Patterson

i {K& P) cnoidal theory, McCowan solitary theory, and the empirical form

: due tc Goda. The Stokes waves, the first and second order cnoidal ‘
waves cf Laitone (1st and 2nd cnoidal, for short), and the Boussinesq | ‘

‘ solitary wave are all less satisfactory. 3
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Figure IV-4 Velocity Field in a Breaker According to

Observations of Miller and Zeigler (1964)
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For the near limit waves the situation is entirely similar, K&P cnoidal,
McCowan, and Goda being best for the longer waves, while gurprisingly

perhaps, Airy theory is reasonably good for the shorter periods.

In specifying a theory adequate for long wa'ves, however, the choice is
immediately narrowed to three: Keulegan and Patterson cnoidal theory,
McCowan solitary wave theory, and thke empirical modification of Airy
theory by Goda. ©Of these, one is inclined toward the analytical theories in
the interests of generality and since Goda's results were developed for

horizontal velocity component only.

As for the horizontal velocity profiles for breaking waves, it is interesting
to point out that in passing from a limit non-breaking wave to the breaking
wave of corresponding period and water depth, the velocity profile is
sensibly unchanged. This may be seen, for example, by close compariscn
of Figs. IV-6 and IV-7. It can be seen that the two sets of data points
overlap completely except, perhaps, in the near region of the crest

where violent turbulent fluctuations occur in the breaking case.

This immediately suggests that, except in the foam region, one may apply
non-breaking theories to the breaker with good results. Hence, the choice
oi the Keulegan and Patterson cnoidal theory is extended to gently spilling
breakers. Again, the McCowan solitary wave theory may prove practical

in some calculations due to its greater simplicity, and Airy theory may

be adopted for pressure fluctuations. Within the foam region no theory will

apply except that the mean motion may be expected to be given roughly.

Of course, the turbulent fluctuations dominate so that this fact is not of

great interest.

Ag the breakers propagate toward the shoreline, they are transformed
into bores and run up the beach. In this phase, it is possible to treat
them with the long wave equations by the method of characteristics

(Freeman and Le Mehaute, 1964),,

A detailed approach to the quasi-steady second region of breaking is
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discussed in the following section where the theory of non-saturated

breakers is developed, incorporating the most recent experimental results.

-
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IV-6 BREAKERS ON CONTINENTAL SHELVES

IV-6.1 . General Discussion

Considerable attention has been given to the hydrodynamics of breaking
waves. The theoretical approaches which have been used fall roughly
into two classes. The first is based essentially on the long wave theory,
the horizontal velocity being assumed uniform along a vertical while the
vertical velocity and acceleration are neglected; thus, the breaker obeys
the equations of a fully devel oped bore. Representative papers are Ho,
Meyer and Shen (1963) and Freeman and Le Méhauté (1964). Keller,
Levine and Whitham (1960} present a method of calculation of the bore
height as it travels toward shore based on these assumptions and the
results of Whitham (1958). Such approaches from long wave theory
require numerical procedures, such as the method of characteristics,
which become unreliable as the involved distances (i. e., the number of
computations) become large. Hence, they are more suitable for steep

bottom slopes than for gentle slopes.

The second approach (presented below) is directed toward gentle slopes,
and was proposed by Le Méhauté (1962) and later revised (Le Mcehauté,
Divoky and Lin, 1968). It is based on the principle of conservation of

energy, and is called the Non-Saturated Breaker Theory.

IV-6.2 The Non-Saturated Breaker Theory

Consider a succession of waves traveling in a s} "llow channel of depth

h, which may be constant or slope uniformly. Furthermore, the channel
width 8§ may be constant or variable, allowing lateral concentration of
wave energy, corresponding to waves propagating on the continental

shelf, although particle motions are restricted essentially to the shore-
ward direction. It is also assumed that a theory that adequately describes
a wave just before breaking will continue to describe the gross features

of the wave after breaking provided that the bottom slope or side-

convergence is sufficiently gentle. It is well known that, as waves arrive
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in shallow water, their crests narrow and the troughs widen, with the
result that successive waves can be treated as largely independent of
one another. Hence, one is inclined to adopt cnoidal or solitary wave
theory, especially in light of the experiments des~ribed earlier. For
simplicity we choose the Boussinesq solitary wave theory although it is
to be expected that a similar development in terms of cnoidal theory

might better approximate actual conditions.

Assuming, after Boussinesq, the wave properties (Fig. IV-9)

1

profile n = H sech? [“/— (H)a h§ (IV-5)
1
phase speed c = [gh(l1+H/h)]? (IV-6)
energy E = —5— pg6h3 (H/h)3/2 (Iv-17)
3V3

where 8 is the width of the wave orthogonals. The conservation of energy

may be expressed as

where (see Le Mehaute, Divoky and Lin., 1968, for detailed discussion)

3

dE | . _ 4 £E--I-—I-E = turbulent dissipation (IV-9)
dt 5 3

f gh
dE - 3 s C e
T -3 AcE = viscous bottom dissipation (IV-10)

v
dE | . 3./3  CcE _I_-I_ 3/2[ breaking av-11)
dt ' © 32 Hth h a+ Eﬁ;; dissipation

where f is a friction coefficient, A(V, w) is an exponential coefficient for
viscous damping, and B’ is ''saturation'' coefficient that is chosen to
define the extent of the breaking region. Now, differentiating the left

side of Eq. (IV-8), and combining it withh Eq. (IV-9) and (IV-11) to

eliminate the common factor cE, one obtains
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we YOIV

3/2
148 , 3 1dh , 31dH _ 4 fH( H) 3, 3/3_ B (4
Tx TZnax Pz ax © '5hh(“h>'zA‘ 32 h""+H‘)(h)
. (IV-12) )
where B =(1 - £)3/(1 + g'H/h) (IV-13) .

Clearly, when
g’ 1, B
B’ = 0, B 1: the breaker is fully developed
8’ is small, B n1l - a’(s ¥ %)

0: the wave is not breaking

3 | B can thus be considered as the ratio of the energy dissipated by the
breaker to the maximum energy which could be dissipated by a bore of
the same height. Note that a small variation in B’ near zero corresponds
v " to a larger variation in B; hence, a breaker may appear to be fully

developed, or saturated, when it is not.

-

The problem, now, is that we have one equation, Eq.IV-12, containing two
‘ unknowns, H (or H/h), and B. It is to be expected that further study will
- enable us to write a second expression giving g’ independently. For' the
prcsent, however, we examine Eq.1V-12 in two idealized cases. Firstly,
consider a very gentle bottom slope or channel convergence. In that case,
H should follow the usual breaking criterion H/h = 0. 78. Then, if

& 1a ]
5 - -S and T ax - -P (IV-14)
‘ we find
1
Bw 485 - 18f + 16h (P - % A) ' (IV - 15)

For two-dimensional waves on the continental shelf (P =0, A= 0), B is

f _ zero if the slope is smaller than about ;:—g-f. frictional dissipation being
sufficient to damp the wave without breaking. On the other hand, if S is
greater than -l--:—sl-g-a -:78 then B w1 and the brecaker is fully devcloped
or saturated. In that case, however, the assumption that H/h is constant

is not valid so that another approach is necessary.
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Similarly, for waves in a converging channel of constant depth and such that
f % 0, one has B = 0 for P = 1 A. That is, the rate of convergence is too
small to overcome viscous dampxng. Wher P = m ; A = ']%h_' B o1

80 that the breaker is fully developed. Again, however, the assumption of
small P and constant H/h is violated.

In the case of large slope or convergence, asaume instead that B is
constant while H/h is variable. Then again letting %i— = -8 and = -Q-

8
-P and linearizing Eq. IV-12, we get

. oyh.2 Hest , 3B 3B _8f o
R - His- 3S)+h 3s+1s‘1)‘3zs‘5 (IV-16)

In case the orthogonals are parallel, P = 0, and viscous friction is neglected,
the above equation can be solved to yield o

-M -1 M
(e R @) e
where M = 2 - ‘%B—--g'sg'

‘I'his corresponds to a two-dimensional wave on the continental shelf.

The result of this equation, for different values of slope S, is calculated

a1. ¥ is shown in Fig. IV-10. On the other hand, one may evaluate

B . chooging a converging channel of constant depth with negligible
friction (f=0) and constant wave height H. The:result is

B =-§-2-h<%) /1+—\<p-EA) (IV-18)

where B = -L—EH- as has been specified in Eq. IV-13.
148"
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Figure IV-10 Height Variation after Breaking
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IV-7 WAVE SET-UP

IV-7.1 Experimental Observations

During several of the ten 9,250 |b HE (High Explosive) run-up tests
at Mono Lake in 1965, several of the shallow water records obtained
within tt e breaker zone exhibited a remarkable, low frequency oe-
cillation of mean water level of amplitude approaching that of the

superimposed breaking waves froix the explosion, an exawmwple of which

e i,

is shown in Fig. IV-1l. Figure IV-12 shows the set-up and tae wave
envelope which was superposed on the wave set-up. Since such
oscillations were not apparent in wave records made outside the

breaker zone, they were supposed to have originated as a result of

wave breaking, and the irnteraction with the sloping beach (LeMéhaute, et al,
1966).

A similar effect was demonstrated in a series of wave tank experi-
ments by Hwang et al. (1967), who found that the maximum wave set-
up ¢n the continental shelf can be as large as 0.2 times the height of
the maximum wave of the train prior to breaking (Fig. IV-13). Be-
cause of its potential aggravation >f run-up heights, some theoretical

attempts to explain this phenomenca are given below.

IV-7.2 Wave Set-Up Due to Periodic Waves

Set-up of periodic non-breaking waves on a uniformly sloping beach
has been investigated theoretically by lLonguet-iiggins and Stewart
(1960, 62, 67, 64), and Whitham (1962) by asing a linear solution for .

periodic wave:, and by Hwang, et al. (1967) by considering the waves

as a quasi-per-odic succession of solitary waves.

Experimental i1 restigaticns by Londgren (1963), Bowen, Inman and
Simmons (1968) and Saville (1961) generally confir n the validity of these
theories: prior to L : eaking there is a gset-down duc to ''radiation stress"

(the tendency to expe: .'ater from regi. . high waves) followed. after
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Figure IV-13 A sample of wave profile
(The station number refers to the distance
in feet from the wave generator; Hwang et al

1967)
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breaking, by a nearly linearly increasing set-up shoreward as a resuit

of mass transport due to breaking (see Fig. IV-14).

According to Hwang, the maximum wave get-up which can be observed

on a shoreline as a result of long pericdic waves is:

1
€= -0.38h +45 T-lg-ahb3/2 (IV-16)

which was approximetely verified by his experiments.

IV-7.3 Wave Set-Up Due to Explogion-Generated Waves

The phenomenon of dispersive wave set-up is more complicated as a
result of the unsteadiness of the momentum flux associated with in-
dividual waves in the wave train. It is a transient phenomenon wh?ch
ig difficult to evaluate. A numerical method of prediction has been
proposed by Hwang, et al. (1967), but it is too complex to generalize
here, despite a number of simplifying assumptions. Qualitatively,

the mechanisam can be explained as foliows.

The wave set-up induced by the first wave envelope maximum induces
shelf oscillation, which theoretically may be amplified or diminshed

by the following maxima, depending upon their relative periods.

The shelf oscillation accompanying the first wave maximum can clearly
be observed in the previous figures. It has been verified theoretically
that these oscillations have periods which closely approach thoge of

the fundamental oscillation of the shelf or its first harmonic. While
resonant cenditions can theoretically obtain if the wave envelope period
(time interval between consecutive envelope nodal peints, ceincides
with a low shelf harmonic, resonance was not obgerved in these ex-

periments.

With respect to application to explosion waves on the continental shelf,

where many low frequency modes of oscillation normally are detectable
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from wave spectra (Miller, etc. 1962), it is possible that such modes

might be excited in a manner similar to that observed during naturally-

occurring tsunamis (Van Dorn, 1965).
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CHAPTER V

WAVE RUN-UP
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V-1l INTRODUCTION

As the explosion-generated wave train propagates towards the shore,
each wave ultimately terminates by running up the beach, possibly
locally augmented or dimished by lower-frequency oscillations of the
type discussed previously. The wave systems produced by large explo-
sions in relatively deep water, aside from their potentially large
araplitudes, represent a unique type of motion that does not occur in
nature, and hence is outside the range of observational experience. The
principal distinction here is one of frequency, the spectral maximum
m for significant events falling with the range 20 sec < Tem <100 sec,
as compared with that for ordinary storm waves (5 sec < T <20 sec)
and for tsunamis (100 sec < Tm <1 hour). For swell, the direct run-
up dominates over local shelf oscillation {surf beat), while for tsunamis
the reverse is true. Limited field observations during nuclear and
high-explosive tests suggest that for explosion waves both factors are

of importance.

Because of present uncertainties regarding the best interpretation of
the run-up results from the recent Mono Lake tests (Rooke, et al., 1967
and Wallace and Baird, 1968), the following discussion of run-up is re-

stricted to theory and experiments involving propagation in one-dimension.

There is no mathematical method available for predicting wave run-up
which will be valid for all possible conditions. Many approximate theories
are available, each with its own range of applicability. Theoretically,
even in the case of regular waves, it is difficult to predict the run-up
from the deep water wave characteristics. The theory must be equally
valid in deep water and in shallow water near the shore where nonlinear
effects must be taken into account. Furthermore, in most cases, the
waves break before they reach the shoreline. The only well-known theory
which includes breaking is the nonlinear long wave theory, where bores

may be included in the computations. (However, this theory is known

to predict the formation of a bore sooner than is observed experimentally. ).
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Finally, it must be emphasized that explosion waves are not regular
but consist of dispersive waves with different periods, wave lengths,
and amplitudes. However, it is felt that without a good basic physical
unde'rstanding of periodic wave behavior, it is not possible to formulate
a realistic approach to the problem of dispersive explosion-generated

waves.

In the next section a brief discussion of run-up of periodic waves is

given.

A more detailed discussion of some of the phenomena treated herein
may be found in Van Dorn (1966) and Le Mehauté, et al. (1968).
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V-2 A CLASSIFICATION OF PHENOMENA AND SIGNIFICANT
PARAMETERS

Since a general approach for complex bottom profiles cannot be made,
phenomena occurring on a simpler bottorn geometry are studied and are
interpreted for their application to actual complex cases. The case on
a uniform slope ended by a horizontal bottom is analyzed. The run-up,
R, is then a function of the slope, S, (or tan a), the water depth over
the horizontal bottom, h, and in the case of periodic waves, the wave
period, 1T (or the wave length, L) and the wave height, H. When h @ =,
the only significant parameters are S, the deep water wave height, Ho’

and the wave length, L.

Thus the relative run-up, R/H, is given as function of dimensionless
parameters, S, (or its inverse value, cot a), relative depth, h/L (or
o= 2mh/L), and wave steepness, H/L. The relative value, R/H, can be
schematically given by a surface for each value of H/L as a functicn of

2rh/L and cot a, as shown in Fig. V-1.

For a given H/L and h/L, the relative ru'n-up has a tendency to increase
as the slope decreases up to the point where the waves begin to break.
Then the relative run-up of breaking waves decreases as the slope con-
tinues to decrease and becomes negligible as the slope tends to 1/100 as

a result of dissipative processes. The relative run-up of nonbreaking

waves also increases as the wave steepness increases (as a result of
nonlinear effects) while the relative run-up of breaking waves decreases

as the wave steepness increases (as a result of turbulent dissipation).

When the relative depth, n/L, decreases, the dependency of relative
run-up upon H/L decreases. This is due to that fact that the relative

importance of the wave length decreases.

The equation for wave run-up might be expressed more generally as

follows:
R . °  2nh H zuh) /  2nh H
H- L Tote T -k T (V-1)
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in which the function f(a, 2rh/L) is the run-up contributed by linear approxi-
mations; i.e., when H/L tends to zero, g (2Th/L, H/L) is the correction
due to superelevation by nonlinear effects, and K(a, 2mh/L, H/L) is the
reduction in relative run-up due to the loss of energy in breaking and bottom
dissipation, as shown in Fig. V-2. The run-up of a wave with infinitesimal
steepness is given on the surface covered with dotted points in Fig. V-1

and the run-up of waves with steepness greater than infinitesimal steepness
is given on surface which lie successively above one another. Breaking

will occur when these surfaces intersect the surface of breaking as denoted

by the equation

[ M

2 4mh -
H a 2mh / L :l
H =ﬁ__/—2 tanh == (1 + —=——— (v-2)
L lma.x Zm m [ LA sinhilu‘h >

When conditions are such that the wave breaks, the relative run-up will
decrease as indicated by a few lines in the diagram. When the value
2th/L reaches 5, the effect of water depth is practically negligible. Due
to the difficulties in presenting three-dimensional graphs, details are not
included in Fig. V-1. The reader should then refer to Figs. V-2 and V-3,
Figures V-4 and V-5 show the experimental data summarized by the
Beach Erosion Board (BEB, 1967). One finds that the results presented
in Fig, V-3 are indeed a very good qualitative description,
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V-3 THEORIES FOR NONBREAKING WAVES

V-3.1 Periocdic Waves

Under certain conditions, a wave may reach the beach without breaking.

Such is the case when, for example, the beach is steep, the wave long,

and the wave amplitude small.

Since the waves do nnt break, it is reasonable to assume that they

are totally reflected by the beach, if one neglects bottom friction.

This is the case of a standing wave or clapotis. The run-up is then
directly related to the amplitude of the wave at the shore. In the ex-
treme case of a vertical wall, the run-up ig, in fact, equal to the am-
plitude of the wave at the wall, or twice that of the original progressive
wave. Hence the run-up, R, is equal to the wave height of the original
wave, H, and R/H = 1. For a beach that is not vertical but inclined

at an angle, @, to the horizontal, Isaacson (1950) and Miche (1951),

using linear theory, obtained the result
I.{/Ho = Jn/l2a (V-3)

By extending the analysis to include second order terms in the cace

of the vertical wall, Sainflou (1928) and Miche (1944) obtained correction
terms to the above formula for a slightly more general geometry, where
the wall is terminated at a finite depth. Bora Miche's and Sainflou's
results, however, are nct complete because their solutions are given

as power geries and do not satisfy the continuity equation exactly.

Miche's formula is

R _ gy 4pHB 1 gy 3 - 1 ) (V-4)
H L otann 2gh U 4 ginn? ZIh 4 cosh? -———ZTITJh J

If h/L is small, this equation ceases“to be useful. In fact, it formally
predicts R/H # w as h/L +0. A better approximation in this case can

be obtained from the solitary wave theory.
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For a sloping beach instead of a vertical wall, we may intuitively arid
the supcrelcvation term obtained in front of a vertical wall to the for-
mula B/H = ./m/2a. This is a valid approximation provided the slope

is not too gentle.

Linear small-amplitude solutions to the problem of progressive waves
advancing from deep water to the shore over a uniformly sloping beach
of arbitrary slope have been given by Isaacson, (1950) and Peters (1952).
The same problem for beaches of special slopes was golved earlier by
Bondi (1943), Miche (1944), Lewy (1946), and Stoker (1947). The case
of three-dimensional waves on sloping beaches has been solved by
Peters (1952) and Roseau (1952). Since progressive waves were assumed,
energy is continuously flowing shoreward and reflection effects are
ignored. Because the theory is linear, the waves cannot break. Thus,
their solutions are not valid near shore because the wave amplitude
tends to infinity. For the two-dimensional case, this singularity is

found to be logarithmic.

To avoid the unrealistic assumption of no reflection, Keller (1961) has \
given several standing wave solutions by matching the sclution obtained

from the geometrical optics theory away from the shore to the linearized

shallow water theory near the shore. For a bottom profile in which the

depth, h(x), gradually increases monotonically with distance from shore

to s cpgnetant values ho at x = », k. nbtains

L
(k_ sinh ghko + Bhko)z

(V-5)

LS

aa cosh B h kg

|1
|

2
in which a = slope angle of the beach at the shoreline, 8 = é (—éTE) and

k is a root of
0

k_ tanh Ehko = (V- 6)

By direct substitution of Eq. (V-6) into Eq. (V-5), it can be shown that

the former is equivalent to

112

s e s e ey— - .
—-— T ———




[ H o

E__ - W { 2h ( 4mh/ L >\
H - Yza 0" Y Sonaom7T

where the term in brackets is simply the linear shoaling coefficient
(H/Ho)c Thus Keller's solution is just the Miche formula (Eq. V-3)

rnultiplied by the shoaling coefficient, showing that the linear run-up

(V-7)

theory is relatively independent of the bottom profile, provided that

it does not vary too rapidly.

Later, Keller and Keller (1964) applied the linear shallow water theory

to a piecewise continuous bottom profile and obtained the resuit:

L g

=[5, 2eare + 3 20/ ] (v-8)

iz

where Jo and Jl are Bessel functions.

This analytical result, for the case of small o, has been checked
numerically by use of nonlinear shallow water theory and it appears to
be satisfactory (Keller and Keller, 1965).

of @, the result shows a considerable deviation from the values obtained

However, for larger values
by Keller's previous formula (1961).

V-3.2 Run-Up of Digpersive Waves

Carrier (1966), combiniag the Carrier and Greenspan transformation of
the nonlinear shallow water wave theory on the sloping beach with linear
dispersive wave theory in the deep water, obtained a solution which gives
the maximum relative run-up in terms of distance from the botiom de-
formation and the angle of sloping beach. This method has been applied
to calculate the time history of run-up of an explosion-generated wave
train (Hwang and Fersht 1966, LeMechaute and Hwang etc. 1967). It is

found that the run-up, R, is (gee Fig. V-6)
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Lcoswi)\ ! ‘rlocosw 8dg + sinw, By Fn sin wigdg]} (V-9)
1
where D = 4.4/x; - x '
| o

1
A o= 2t al

no(t) is the incoming wave train at the toe of the slope (Fig. V-7).

A sample of such calcuiation is shown in Fig. V-8, corresponding to
the incoming wave train of Fig. V-7. The above run-up calculations
have also been compared with those predicted for periodic waves over {
small slopes in Fig. V-7, the former being about 50% greater for the v
cases considered. The reason feor this increase is not obvious because
of the approximations involved in the calculations, but is possibly due E

to the interactions between consecutive waves that are ignored in the

periodic solutions.




(L961 ‘BuemH pue ayneyo o 928) 33 00¥91 = YId3Q -zazemdas(q

2I0YysIJO 8IITWI 29 - 33INOG
yydag doueqanisyg I0INog
snIipey IdueqInisyg 3d2Inog

33 00¢
"3 00¢e

303 yoeaq-je UlRl], dAaeM aa1saadsyg yndug L-A @andig ,”. '

[ o

A

Jlalu : T i i g T ; : Ny ‘I.u.. X
b ﬁ %.b _ND ! % i L~ @i i .L,Lﬁu...m. ;n.t_ o Tn 4 r.w.h /8.3\./8.1#\.!8._.. . o Lk S-SR Ne)
>, 1 } 7t 4 v wr > | T (\ T — - " = —y
! ﬁéa i f. v AL ) By o /\ Voo oy 2 —
- ! P ! m STV G O N O 250 G 3 N0 SR My L0 1 8 : : I - ilv|l“|.|u!,cl|.w.l RN S-S
m Ml I ! ! __ M_ C. i . . i i | i ! | ! \ _ i i ¢
_ P | | S N Yt | N ¢ (% £ 0 5 U A GO A L 0 S T G I ||4|lril,. - Ir e
— P i : W ' . | : .,W ; 1 3 _vw i ! Ct H ! i _ ¢ ] N .
| _ m i USSR A HE G B S W 18I S U S S R S S U S S -
oL B RN i ATRE N A ‘_
1 4l ; —_ ek : - e G et e i |
' ! _ i H . : 3 ! . 1 _d i H ' !
S N A T S A N S TG SN GG SN SO | £ 1200 528 i SRS SN SR SN SR Y S SIS S RS
i i ! T i “ | i ' ! i ; \ |
-1 R e IR ER i 1 i i
w SR R SO S R e (Do a1 — T -~
N A 2 B ; ! L b L
i : ; i { + (OO | QA | + et e e e e
o T I S A U V: & LF . _ ,.
_ o P! Pt :
P N

it o ; ;
¢ L. boend + + —_ A

S R O O 2 8 S O S S

! - H
o g s g e
f
i




Aot e e oy Tepes e J - S e e e e e e o e e e e

] G-A 8t

p
ﬁ.o"&oﬁﬁmum “
Ul UMOYS se Urex) QM@% Supxoour. 2ay3-#0J aurraaoys ayl ye Axoysiy dn-unyg 8-A 21n31y !

|
Y - T T T T T ! —r T v - J
: . : . . H i . : H H i a2 - - -t — ohee koo pouiri QUSSR L T S — '
- Tw.T.T.lx,r#.L‘ el ok B T.w# MI_.-_Jno.u " 7 t 1 11 ¥ — , R R i
] L] 1 M ! - H N - . —_
T . ME i § P : . s : __ SRR 1.
- b R e o s ﬁlva” L w-|W|v_'.r A -+ nr WW ” Aw o i ..lﬁl.rl|va|. Af.tl T 4 - h||.
B i ) T
i : ’ i | i : H R L R A SV DU B N S 8 | S .
-t b Frore s T T | I3 B A j i i RN
* i B ; i ! ! ” i
—_— - 4 e + p A.1.lv NS WY SN B I j=— lllvl,“vu i ._ .p L, -t WS WIS S L .. R \ S QR .l- — e ——
—+- v . - t 4 . -
1 —1 . — T
IT< — gt ﬁ B _nwvA«l SR P TS O ﬁ.ﬂ ” __ n_wl" v -4 \.p I S b——¢ -1 - — ] m —_ ,
i ! - : . i H H ;
- ] M . 4 H IS . ﬁ. L- R ".I _ _ _1L. . |
43 +1T_w m .V & e 8 X wa S ] SR o ¥ w_ ; - _. : =1 . + + L~ A -+ i
. - i N e 1 | L JAl JE 1) T S C 1] L | 0 LA A *
—++—+ V- i 8 [t el RIS S 20 A ! I i T i
H ; H | H + } 1 i i
: i | L I\ ; 4 : N j bbb O RO P S
EE . E Sy e e ey ee S e S S Te e e : _
+ H T ; : : ; i ; ; S () i
—“— .r.ﬂ. “ -1 43 + -§- -~ L + Aﬁus.wn —t—+ : + - 4+ 4+ - b — ;
13 e : i -
o : ! 1 2 ral 1o . - 21 1 __
- b L 3 T " T - e T o w [J . e
" . " A - 1=
- =44 +- - —4 V.:. — wa ! [ T 4 m ] T I e N e 2t : t~
4 H n 8 B 4 =1 -~ +- — :
lvn_lnv' - W - + R {om 5130 hvltﬁ 444+ W ¥ L+ t + - L —=t- -+ =+t =171 -1t -.rJ -t Lond
il R - . H ; e .
r\.l.i.w LS g -4 +% - . % 3 o m i _ b _ -} - R St SoR R B SRS S Sl Sy bt SN —
i . 1 i ; i : . ; |
¢ i M ! ! - i R DUNUE FURRR SUDUD SIS MRV SE S U N S .. R DN N
- -4 - _ 4 “ R + | < - - 1%t -1 Al SR ” : + + +rl X . Fe— L T t .
+ * * H T
! O e B A R (10 o1’ i e e e e o O S OO R I S e AR G sttt s i oo s

- L.+ 4

s —4- e - I R T —4 - R
T : U A | A : W
L] 1
s - N T SRR s -— —f e 4 f— —{—-p— v b=
- —1
" 44 - O S [T WP W, WIS Gy SN
. ot - .

o oo AT i % e

e r




V-4 RUN-UP OF BREAKING WAVES

V-4.1 Bore Run-Up Theory

In a sequence of papers [Ho and Meyer (1962); Shen and Meyer

(1963 a, b); Ho, et al. (1963)], the problem of the climb of a bore on a
beach is analyzed, based on the long wave equations. One of the con-
clusions reached for the case of long surf on a uniformly sloping beach
is that the bore collapscs when it reaches the shoreline and the run-up
is given by uOZ/Zg, in which u, = the horizontal velocity at the shoreline
at the instant the bore reaches the shore, and g = the gravitational
acceleration. The value of u, depenids on the initial bore characteristics
and the characteristics of the beach. In these papers no simple method
is given for the computation of this velocity. Whitham (1958) has proposed
a simple approximation which can be used to calculate the bore behavior
before it reaches the beach, by applying the equation for the forward
meoving bore characteristic line to the flow quantities just behind (i. e.,
on the seaward side of) the bore. Coupled with the bore equations
(conservation of mass and momentum across the bore) this method
yields a first-order ordinary differential equation for the bore strength
as a function of depth. Thus. when the bore strength is known at one
point, it can be determined at any other point. In particular, the bore
strength (and hence the value of the velocity u_ at the moment the bore
reaches the shoreline) may be determined. From this, the run-up,

R = uOZ/Zg can be calculated.

Keller, Levine, and Whitham, (1960) checked the accuracy of Whitham's
approximation by comparing certain cases with numerical solutions
obtained by integrating the nonlinear shallow water equations by finite

differences with good agreement.

It must be pointed out however, that this calculation is based on many
assumptions, and cannct be applied in practice without substantial re-

servation. In particular, friction effects have been neglected, as well
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as the vertical component of velocity at the frece surface which tends to
infinity. The Whitham approximation also ignores the slope of the wave

behind the bore, which can substantially influence the run-up.

Lastly, the run-up is independent of the beach slope, which can be true

only if the bore height decreases seaward from the bore front.

V-4.2 Run-Up of Nonsaturated Breakers

The nonsaturated breaker theory discussed in Section IV-4. 2 provides
an approximate means of determining whether or not run-up will be
significant for breaking waves on a gentle slope. FEeinterpreting the
conclusions leading from Eq. 1V-12,

1. If S <0.38 f, then the wave never brezks. All the energy

is dissipated by bottom fricti“n. No run-up is experienced.

Actually, viscous dissipation should tnen be taken into
account near the shore.

2. When 0.38f «S < 0.38 f + 0.02, the wave breaks as a
spilling breaker and the rate of energy dissipated by
the breaker increases as the bottom slope increases.
All the wave energy is dissipated before reaching the
shoreline. There is practically no run-up; however, a
small rise of mean water level on the shore does exist
as a result of mass transportation and the momentum
of the breaker.

3. When S > 0.01 or thereabouis, the breaker becomes
saturated and becomes a fully developed bore, and run-

up is to be expected.

An interesting implicatior of this theory is that there 1s a maximum
amount of energy which a solitary wave may carry towards the shore.
If the depth decreases, the excess energy must be dissipated by
breaking. The fact that the breaker may be saturated implies that
there is also a rmmaximum amount of energy which can be dissipated by

breaking. If there is more energy available, it will be carried along

(as a bore, instead of a spilling breaker) and the excess will cause run-up.
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The theory of nonsaturated breakers has recently been extended to in-
clude mass transport and the wave set up, so that it satiasfies the law of

continuity and the momentum theorem (LeMehaute, et al., 1968).

On a gentle slope (S < 0.01) which steepens near shore (0.1 < §< 0. 3),
the greatest run-up will be produced by a (solitary) wave which just
exceeds the breaking criterion (H = 0. 78h) at the point where S 0. 0].
All larger waves will break earlier, dissipating their excess energy as
spilling breakers, such that the same run-up will result. All smaller

waves will break later on a gteeper siope, and the run-up will be smaller.

V-4.3 Nurmerical Methods

When the method of characteristics is applied to the motion of a bore
propagating to the shore, it is found that the bore height tends to zero
on reaching the shoreline. This may be shown rigorously on the basis
of the long wave equations (Keller, Levine, and Whitham, 1960). The
run-up then consists of the further propagation of a sheet of water up
the beach with zero thickness at the leading edge. From a physical
point of view, this description implies very large frictional resistance
at the leading edge. Hence friction cannot be neglected for evaluating
the run-up. This theory also leads to the contradictory requirement that
the bore collapses at the shoreline, as a result of neglecting the vertical
component of velocity and vertical acceleration. It aiso requires that,
in case of collapse, both should tend to infinity at zero depth. For

these reasons, the theory appears to be invalid on purely physical

premises.

LeMeéhauté and Moore (1965) have also used the method of characteristics,
where friction was included, but without resorting to the Whitham approxi-

mation. The particle velocity at the water's edge as it advances up the

(dry) beach slope was assumed to be proportional to the bore propagation

speed.

By this method the “un-up, due to various kinds of solitary waves
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travelling over severai bottom slopes, was calculated, giving rise
successively to spilling breakers and bores. Some of their results
are shown in Fig. V-9, where the run-up is given as a function of

the ratio F = £/A2 of the assumed friction factor to the proportionality

coefficient A relating particle velocity to bore speed.

It is concluded that the run-up of breaking waves has been determined

by theory only for the case of solitary waves. The problem becomes in-
creasingly difficult as the wave period decreases (or as the wave steep-
ness increases) due to the influence of the backwash on the following
wave. Because the backwash causes more energy dissipation in the

bore, wave run-up decreases as the wave steepness increases. However,
on the continental shelf, backwash is negligible and the solitary wave
results should be adequate, although most of them have yet to be experi-

mentally verified.
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The Run=-up of Solitary Waves
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V-5 EXPERIMENTAL INVESTIGATIONS

Relatively few experiments have been conducted on the run-up of
breaking waves per se. Probably the rnost extensive study is that of
Savage (1959) for pericdic waves incident on relatively steep slopes

(0.03 < S € o0), and included both non-breaking and breaking waves, with
no distinction between them. These results were later analyzed by

Van Dorn (1966), who found that the data were clearly divisible according
to whether or not they satisfied the breaking criterion of Hunt (Eq. IV-4),
and that the run-up of breaking waves clcsely obeyed Hunt's empirical

formula

= 2.3sw/t4}

o P

where H is the wave height in the uniform-depth section of the wave

channel.

This relationsghip is compatible with the fact that the wave dissipation

mechanism is fully turbulent, i. e., proportional to the square of velocity

which is itsc:lf approximately proportional to the square of the wave height.

Such a relationship should not hold when waves of small steepness break
over very gentle slopes because the viscous dissipative mechanism has
more relative importance. Thus this formula, based on experimeutal
data, should not be extrapolated to waves of small steepness over very

gentle slopes.

Additionally, there have been a number of run-up studies with leading
waves of a wave train, of which the most extengive were those of Kaplan
(1955) and Hall and Watts (1953). These results are presented as power
functions of H/L and H/h, respectively, which make them difficult

to interpret,

Van Dorn also found that the run-up of non-breaking waves reported by

Savage was consistent with the small amplitude theory of Keller, provided
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that the effect of finite height is included. Recently, experiments for
wave run-up of dispersive wave trains were performed at NCEL (Jones,
1968). The results indicated that the relative run-up was smaller than

the results calculated by Miche's formula.

Additicnal wave channel experiments with periodic non-breaking waves
on small slopes (0.1 < S < 0.03) have been reported by Le Méhauté,

et al. (1967), qualitatively verifying the theoretical curves given in
Figs. V-1, V-2 and V-3, although for the smallest slopes the observed
run-down exceeded the run-up, suggesting that trictional dissipation in
the thin leading wave edge may be a limiting factor in such experiments.
However, contradictory observations have been reported which indicate
that the run-up is greater than the run-down (Wallace and Baird, 1968).

The reason for this is not known,

Recently, experiments for measuring wave run-up in an idealized three-
dimensional bay have been performed at Tetra Tech (Hwang, et al., 1968).
As shown in Fig. V-10, the bay is S-shaped with a sloping beach; the
beach slope is 1/5 and everywhere perpendicular to the local shoreline.
This arrangement, with a convex shoreline at the entrance and a concave
region at the rear of the bay, is adjacent to the tank wall and he'vce
represents, by symmetry, half of a bay with general features sim lar

to many natural bays. The results of experiments are shown in Fig, V.. 11,

As shown in that figure, the relative run-up at different locations with the
same beach slope may vary from a value less than 0.7 to a value of 13.

It is also shown that the relative run-up is strongly depzndent on wave
period. The run-up at locations 1, 10 and 17 on the sarmne geometry has
also been calculated from Miche's formula with refraction correction

as shown in Fig. V-12. These values are considerably smaller than those
obtained from the measurements. Thus, it demonstrates that when the
shoreline includes bays oine has to take into account the oscillation of

the bay.

Experiments to measure wave run-up in the field were performed at
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investigation of wave run-up due to bay oscillation

Figure V-
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Mono Lake in 1965 and 1966 (Rooke, et al, 1967, Wallace and Baird,

1968). In 1965 the run-up was measured on a relatively simple beach

condition. These experiments indeed proved that the wave run-up
obtained by extrapolation of what is obtained in tsunami waves cannot
give a reliable estimate of the effect of explosion waves. As most of

the energy is dissipated before the waves reach the shoreline, it is

evident that no catastrophe of damage by flocding can result from ex- .
, plosion waves as was initially feared. These experiments proved that
| wave run-up due to explosion waves is much smaller as compared to

relative run-up of tsunami waves.

A formal prediction based on these assumptions was made (LeMéhauid,
et al. , 1965) and, as a matter of frct, the maximum wave * .n-up pre-
diction was even lower by 59% th.a» that observed in the test. Tbhis dis-
crepancy was largely due to the inaccuracy ci the gredictiurn in deep
water wave trains. In 1966, experiments were performed in a complex
geometry with shorelines containing large boulders and small bxys. The i
experimental results, compared to the prediction, appear to be somewhat ‘ ‘
improved. However, the predict:d results were, in general, larger than ‘
the observed results (LeMehauté, et al., 1966, and Wallace and Baird,

1968).

The problem of prediction of leading wave run-up has been subjected to

discussion due to the fact that the observed resuilts do not fit the prediction.

The difficulties in predicting the run-up of the leading wave are not only
due to the difficulty in predicting the run-up of the leading wave itself,

but also due to the fact that the scaling law for wave prediction, which is

established for maximum wave amplitude, is not adequate for prediction

bt

of the leading wave.
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HARBOR OSCILLATION
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vi-1 INTRODUCTION AND GENERAL REMARKS

Since harbor or bay oscillations may enhance the wave run-up and
damage moored ships, it is well to consider in some detail the nature
and practical importance of harbor resonance, and te recount some

of the important progress made by earlier investigators.

The occurence of resonance in harbors is fundamentally due to the
fact that waves arriving at a widening or narrowing (or at a depth
increase or decrease) are partially reflected. Consider, for example,
a rectangular harbor open to the sea. Waves arriving within the harbor
are reflected seaward by the rear boundary; these outgoing waves upon
reaching the harbor entrance are partially reflected by the sudden
widening with the net result that part of the wave energy which got in
does not get back out. This trapping of energy by the h~rbor leads
to resonance if the phases of the various incident and reflected waves
happen to be such that reinforcement occurs. In this case, the am- ,
plitude of oscillation may grow, within the harbor, to values far
. greatcr than thosc incident. At some stage of growth, however, energy
dissipation equals ecnergy trapping and the oscillation amplitude reaches
its maximum. T}‘lis stabilizing dissipation is of four main forms:
wave radiation seaward (usually dominant); wave breaking within the
harbor when the oscillation exceeds the breaking limit; frictional

effects at the bottom; and wave absorption on the bounding beaches.

The problems of dcvclopihg a practical calculation procedure applicable
to these processes, already difficult, are¢ compounded by the facts that
harbors are usually of complex shape and that incident waves are never
periocdic. Irregularity of shape causes complicated reflections of the
waves within the harbor so that even for pericdic input the agitation

. may appcar highly 1rregular. The response to random seca or swell
or to a dispersive wave train generated by a localized disturbance is

still worse. Furthcrmore, oscillations may be induced by other mechanisms
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such as fluctuations in atmospheric conditions, currents moving past the
entrance which generate a series of alternating vortices, and even ship
transit in and out of the harbor. It is no wonder, then, that taken in

its entirety the problem of harbor resonance is intimidating.

Yet, solutions must be found since the harbor resonance problem is of .
very great practical importance. in coastal engineering. This is so '
since it is associated with the ship mooring problem. It is well known

that harbor oscillations of only a few inches rmay excite large motions

in ship-mooring systems causing mooring lines to break, and ships

to collide with adjacent structures. To minimize such events is the

goal of narbor and breakwater design and for that purpose one must

be able to determine harbor response characteristics.

Analytical studies in this area are, for the most part, quite recent.

McNown (1952) determined the resonant frequency of a circular harbor

with a small opening under the assumption that the water surface

remains essentially horizontal; a similar approach was applied by

Kravtchenko and McNown (1955) to the rectangular harbor. Miles and -
Munk (19€1) considered harbors of arbitrary shape and formulated an
integral equation describing the agitation within the harbor by matching
conditions inside and outside the harbor at the entrance. But they im-
posed the restrictions of narrow opening, and slim and rectangular harbor
in order to obtain analytical expressions for the resonant condition and
maximum amplification. Ippen and Goda (1963) applied Fourier trans-
formation methods and obtained the solution of the rectangular harbor.
The results were compared with a series of experiments. For long
harbors, the agreement betwcen theory and experiment was good except,
of course, at the resonance point wherce viscous dissipation is important
anrd the experiments becoma difficult. Biesel and LeMchautd (1955, 1956)
and LeMchauté (1960, 1961, 1962) presented an interesting approach in
the solution of reciangular harbor under various types of entrance con-
ditioris through the usc of the theory of complex numbers. Through

this method, the following results were found:
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1. The smaller the harbor entrance width, the smaller the
possibility of resonance. However, the resonance peak,
if reached, is then very high, and its height increases as
the width of the opening decreases.

2. Wide open bays and harbors always amplify the incoming

wave agitation. However, the resonance peak is flatter.

3. Wave energy absorbers are efficient in cutting peak

resonance in enclosed harbors. They are less efficient

in wide open harbors.

Most recently, Leendertse (1967) has developed a numerical procedure
to determine the response of basins to long waves, elevation at open

! boundaries being prescribed.

j
‘ All of the foregoing studies suffer to some degree from various de-

ficiencies; either they are applicable only to idealized shapes or matching

conditions at the harbor entrance are required.

Advances have been made recently in the analysis of the harbor problem.
) Harbors of arbitrary shape with constant depth have been solved by
* Hwang and Le Mehauté (1968). The method they proposed has overcome :
.

the assumption of conditions at the entrance, which has been the major
problem in previous analytical studies. Because of its importiance to

1

s‘

! the mooring and run-up problems. this method is now summarized.
!

!
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V1-2 THEORETICAL DEVELOPMENTS

VIi-2.1 Formulation of the Problem

Assuming that the fluid is inviscid and incompressible, there exists

a velocity potential &(x,y,z;t) which satisfies the Laplace equaticn .

vé=0 (VI-1)

throughout the fluid contained within the boundary surfaces as shown
in Fig. VI«l. If the wave is assumed to be of small amplitude, the
velocity term in the Bernoulli equation may be neglected. Thus the
governing dynramic boundary condition on the free surface becomes
(see Stoker, 1965)

E n=-§¥ atz =0 (VI-2)

where 1 is the wave elcvation and g 1is gravitational acceleration.
The linearized kinematic condition at the free surface follows from

the fact that surface water particles stay on the surface and is ex-

; pressed in the form

T é.ﬂ = 22- - =
! Y - atz =0 (VI-3)

The condition on the fixed boundary surface is that the velocity normal

to the surface equals zero; that is

3

l-e-

(VI-4)

[ Y4

n

on the bounda:y S

Since wec are dealing with uniform water depth, h, the condition at the

bottom is simply
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9—5: 0 atz=-h (VI-5)

Finally, the condition at infinity is that
¢ = ¢ (V1-6)
where Qc is prescribed (input).

The above equations complete the formulation of the problem of

oscillation in harbors of arbitrary shape.

VI-2.2 Analytic Solution

Since the water depth is uniform, we may assume that the velocity

potential is a product of functions of x and y, z and t, such as

t (VI-7)

$(x,y,z;t) = m%ip(x.y) Z(z) et

where w is the angular frequency.

Substituting the above expression into the Laplace equation, we have

2
Z_ (VI-8)

'l'(éig +‘ éf‘_cg) + 3%
2

L PYC I W

After separating the functions of x and y, and z in Eq. (VI-8)}), and

equating them to a constant, say kz, we have

2 2
_a...% + _B____sz;‘ + kch = 0 (VI-9)
9x oy

and
2%z 2
Z . Pz =0 (VI-10)

3

z

where k is « constant which is related to the frequency .
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The solution of Eq. (VI - 10) is simply

Z(z) = Clcosh kz + C2 sinh kz

The constants C; and C2 are related to each other by

sinh kh

C, =C) <Coshkh

which is obtained from the bottom boundary condition

0Z

= =0 at z=-h

resulting from the substitution of Eq. (VI-7) into Eq. (VI-5).

After substituting Eq. (VI-12) into Eq. (VI-11), we have

Clcosh k (z+h)
Z(z) = cosh kb

The constant C; is determined from the free surface condition

C

_ 1 3% _ i iwt _ iwt
n=-gw T3 ©(x,y) e = AP(x,y) e
z=0
C
where A = - — is the wave amplitude. Thus we have
_ A g cosh k (zth)
2(z) = - cosh kh

The constant, k, is a wave number, and is related to the angular

frequency, @, and the water depth, h, through the kinematic b

condition at the frec surfacde (see Eq. VI-3).

Substituting Egs. (VI-7), (VI-15) and (VI-16) into Eq. (VI-3) wc obtain

wz = gktanh k h

136

(Vi-11)

(VI-12)

(VI-13)

(V1i-14)

(VI-15)

(VI-16)

oundary

(VI-17)




A PRI AT a0

The problem now is to obtain the solution of Eq. (VI-9) with the bounclary

condition
39 = 0 on the solid bounda.ry S (VI-18)
§n ! ‘

which is obtained from the subsatitution of Eq. (VI-7) into Eq. (Vi-4),

and the prescribed condition,
P = @ at infinity, (Vi-19)
where ¥, represents the incoming wave.

For a straight-crested standingwave at infinity with the crestatthe harbor
at an angle g, as shown in Fig. VI-2, the wave form is simply
‘W . ,
n= AQ et = A cos kx' eI (VIi-20)
where x' is the coordinate measured perpendicular to the wave front,

and is rotated an angle B from the x axis. Since

x' = xcos B + ysing (VI-21)
we have
P, = cosk(x cos B + y sin B) (VI-22)

If the wave front propagates directly toward the shore, B is equal to

zero, so that

%, = cos k x (VI-23)

For a standing wave of unit amplitude at infinity, the solution or Weber's
equation, Eq. (VI-9), together with the boundary conditions, Eq. (VI-18)
and (VI-19),can be found through the introduction of a sourcc function

Q(g, n) along the boundary S, wherc Zand nrefer to coordinates on the

boundary.
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Thus the value of ®(x, y) at any point P(x,y) is equal to the sum of
two parts; one is the influence from infinity, Cpo(x.y). and the other is
the contribution of the source distribution, that is, the scattered wave

caused by the presence of the boundary

Jd§Q(§.n) G(x,y; 8, 1) (V1-24)
§

where G(x,y; &, ) is the Green's function and Q(§, 1) is the unknown

source distribution which can be determined from the boundary con-

ditions.

The Green's function has to be chosen so that it is the solution of

Weber's eouation, satsifies the radiation condition at infinity, and

has a singularity at the source point. The Green's function may be deter-
mined easiiy from Weber's equation in cylindrical coordinates,

that is

14 (d9), 20 - R
Ré‘ﬁ(dR)*k‘p‘o (VI-25)

The solution of this equation involves Bessel functions or Hankel
fﬁnctions. Since the Hankel function of zero order and first kind has
the following properties
i 1
-3 H0 (kR) - > Zn (kR) as R +0
and

1 [2m i(kR + {m)
T mVYkR € as R » =

it satisfies the requirements prescribed previously. Thercfore,

‘we choose the Green's function to be

Goeys 3o = - 5 H (o) | (V1-26)

where
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2
R = |/ (x-2)% + (y-n)?
so that the value of ¥(x,y), at any point, P(x,y), is

Px.y) = @ (xy) + [ dSQE. 1 Gley; £ 1) VI-27)
S |
The problem now is to determine the strength of the source distri- ‘
bution, Q(€, n). This can be accomplished by applying the boundary
condition of Eq. (VI-18) which.gives

9
lim CPO +--a-- Id-S-Q("" M Gix,y; § n)] = 0 (Vi-28)
'5‘;;' an | X v Y s 1)
S5

x,y 28, n

Since the limit is singular inside the integral, it has to be treated

with care.

Considering the contour of integration, as shown in Fig. (VI-3)

77]
A Y
™
)

Figure VI-3 Contour of Integration

we evaluate the integral in Eq. (VI-28) as follows

-4

lim x| a5QE. 1) Gy 5
x;y —.Dr T\ S

= {-_clé' QE,n) Gn(x,y;i. 7+ Hm J:dg Q. n) Gn(x.y;i. n
V1-29)

* S x,y*i,n ¢
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where the sign, { refers to the principal value. Since the Hankel

function can be approximated by

- A aw) 4 o 0 o), as R 40 (VI~30)

the second integral of the right hand side of (VI-29) may be integrated
analytically. We have

lim < j‘edé' Q. 1) Glx,y; &)

x,y 2385, n
0
= 3 _l_. _a_ \\ - Q(g’ )
= l]il-:g 5 Q(g,n) ‘.’..n(aR 4n kR jRdS = —-2——-3— (VI-31)

Thus the integral equation becomes

tag.n + f§d§ Q(Z, M) G_(kR) = - 5= (x.y) (VI-32)
where
_ i3y
Gn(kR) = - T HO (kR)

The above equation can not be evaluated analytically. A numerical
method for evaluating the source distribution Q(5, n) has been developed
by Hwang and Le Méhauté (1968).

141




SR TR o T R TR T e R e T s

VI-3 CALCULATION OF VELOCITY AND AMPLIFICATION FACTOR

Once the source strength Q has been calculated the value of ®(x,y) can
be evaluated by substituting values of Q into Eq. (VI-27). Thus the
velocity potential can be calculated from Eq. (VI-T7).

. B A cosh k(z+h) iwt
d(x,y,2z;t) = -ﬁw(x,y)m e (VI-33)

The velocity components at any location, P (x,y,z), can be calculated as

o¢ o, dcp
A SR ¥ S G " oin e S22k Klath)
u o= -E= s - 5 cos wt - sin wt “osh kb (VI.34)
o8 3 Gl
= ooE s JARL T o - T ]coah k(zth) -
M dy m |5y cos wit sin wt Teosh E . (Vi-35)

where the subscripts i and r refer to the imaginary and real parts of

the complex valuesandu, v arehorizontaland vertical velocity components.

The velocity field corresponding to Wt = 90° for the harbor of Port
Hueneme is calculated by use of this method and is plotted in Fig. VI-4.

The amplification factor at any point P (x,y) is equal to the ratio of maxi-
mum wave height obtained at point P(x,y) to the wave height at infinity.
The maximum wave height at infinity is A. However, the maximum

wave amplitude at point P(x,y) is

)
19%) = A oy

n = I-Eﬁ z'.=0I

Thus the amplification factor at any point P(x,y) is simply
A= 2= oyl (VI-36)
p A i

and the result of this calculation is shown in Fig. VI-5.

Figures VI-6through VI-8 are results extracted from a study made by
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Tetra Tech for the Atomic Energy Commission (Hwang, et al., 1968).
Figure VI-6 shows Barbers Point Harbor, Hawaii, while Fig. VI-7 indi-
cates the response to periodic waves by the harbor at locations 1, 2, 3
and 4 as indicated in the figure. Figure VI-8 shows the response curve
at location 4 together with the first amplitude envelopes resulting from
100 KT, 5 MT and 25 MT nuclear explosions near Johnston Island. The
method of calculation has been outlined in several reports (Hwang, et al.,

1968, Hwang and LeMehaute, 1968).

It is necessary to point out that viccous dissipation and the effects of

water depth and large wave amplitude are not considered in this calcu-
lation and will certainly tend to decrease the peak resonance amplitude.
Further research on these effects is necessary in order to obtain mwore

accurate predictions.

148

P A+ s e




CHAPTER VII

A SUMMARY FOR MAKING ROUGH ESTIMATES
OF WAVE CHARACTERISTICS
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VI A SUMMARY FOR MAKING ROUGH ESTIMATES OF WAVE
CHARACTERISTICS

Chart VII-1, presented on the following page, summarizes the calculation
procedures for explogsion-generated waves and their propagation and
transformation. These calculations are quite time consuming, and
necessary only when detailed information is required. In some cases,

a quick estimation is required for operational purposes. For this reason
a simplified method which gives only the properties of the maximum

waves is given.

As shown in Fig. VII-1, a nuclear explosion of yield Y is assumed to
occur in deep water off the continential slope. The explosion generates

a wave train propagating in all directions. The maximum wave amplitude
of the wave train in deep water is related tc the distance from

Mmax
the explosion, r, and the yield, Y, as follows (see Eq. II-23):

0. 54 oy
Nmax =(18 Y /r)ft., [r] = ft, [Y] = lbs. TNT (v1I-1)
assuming that the detonation occurs at the upper critical depth. The
wave period, 7T, of this maximum wave is (see Eq. [I-25)

T = 1.63Y% 1 sec. [Y] = Ibs. TNT (VII-2)

As the maximum wave propagates towards the continential shelf, its
amplitude decreases a2s a result of radial spreading, until shoaling and
refraction effects become important. The calculation of wave amplitude
including thesc effects is rather complicated as discussed in section
IIi-3. 2. Here, for simplicity, we agsume that the explosior is rather
far away trom shallow water so that the waves are almost two-dimen-
sional when they arrive. Thus we may calculate the maximum wave
amplitude Nmax by use of EEq. VII-1, until the water depth, h, is
equal to one quarter of the wave length, L

ma

« ) .
becomes important when h= szax). From there on, the maximum wave

height may be calculated by simply multiplying by the shoaling coefficient

x (we aasume that shoaling
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CHART VII-1
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Sc = nl as given in Fig. IlI-1. Refraction must also be accounted

for, ang may be determined from linear theory to a good approximation.

As the wave increases its amplitude by shoaling to the point that the

L water depth is insufficient to transmit the wave energy, the wave will

break; this occurs at the intersection of the curve of wave height and
the line of breaking index as shown in Fig. VII-1. After the wave breaks,
it propagates towards the shore, as described by the non-saturated

breaker theory.

i There is no simple formula to estimate the lateral extent of the breaking |
region. However, previous calculations (Le Mehaute, et al., 1967) in-
dicate that it is typically approximately equal to two times the distance

between shore and the point of breaking inception.

The estimation of wave run-up is extremely difficult because of the

usually complicated shore geometry. However, if the shoreline is

assumed locally straight one may estimate the run-up according to the

flow cnart (VII-2) onthe following page. Itis basedonavailable theories and
empirical results discussed previously, and is drawn in such a way that

it is reasonably simple to use and covers a wide class of possible situations.
As such it cannot always be expected to give as reliable a result as the

best that can be done by an experienced person analyzing a particular
problem. It is only intended to be a guide for a reasonable estimate of

the run-up.

The basic problem involves the following:

Given: Hi' the incident wave height,
Li' the incident wave length,
T, the incident wave period obtained from Eq. II.31, and
h, depth of bottor: profile at which the above values

are given

: To find: The run-up, R.
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CHART VII-2
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The first question that must be answered is whether the wave is preceded
and followed by more waves with the same properties. If it is, the wave
may be classified as purely periodic, to which most of the theories

and experiments apply. If, however, it is a mnember of a wave package,
the theories and experiments described before cannot, strictly speaking,
be applied. Nevertheless, in view of the fact that in most cases the pro-
perties of the waves vary only slowly from one to the next within the
wave train, one may apply them even in this case provided the wave
under consideration is not very near the front or tail of the wave package.
For the leading wave of such a wave package, either the Carcier and
Hwang theory (if it does not break) or Kaplan's experimental results

may be applied. One must be careful, however, of the defirition of wave
length in such a case. For purposes of estimating the run-up, the
succeeding waves in such a wave train may be considered as periodic

in character. If the succeeding wave breaks, the run-up may be cal-
culated by use of Fig. VII-2, which is obtained from extrapolation

of Saville!s observations (BEB TR-4).

For evaluation of wave run-up inside a bay, the procedure is also outlined
in the flow chart. However, the method involved is rather complex, so
that no straightforward formulas can be given to obtain the wave run-up.
Estimates of run-up in such conditions require considerable understanding

of the nature of the harbor or bay response.

Finally, it is important to point out here that no beaches are perfectiy
straight and uniform in bottom siope, and no waves arc perfectly two-
dimensional. Thus the run-up observed may exhibit a large variation
from time to time and from location to iocation for relatively uniform
incoming waves. Such random behavior has not yet been tackied with an
analytical approach. Observations at Hawaii and Mono Lake indicate
that the distribution of 21l run-up data about the average run-up appears

to follow a log normal distribution.
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